Janardan Bhagat Shikshan Prasarak Sanstha's Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous)

Re-accredited A+ Grade by NAAC

Syllabus for S.Y.B.Sc. Program B.Sc.

Course: ZOOLOGY

Semester III and IV

(Credit Based Semester and Grading System with effect from the academic year 2020-2021) Syllabus for S.Y.B.Sc.

Course - ZOOLOGY

- 1. Preamble
- 2. Aims
- 3. Syllabus Semester III & IV
- 4. Questions paper pattern (Theory & Practical)
- 5. References and Additional Reading

PREAMBLE

Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous) has initiated several measures to bring competency and excellence in the Education. The significant measures taken to enhance academic standards and quality in higher education include innovation and improvements in the curriculum. Board of Studies in Zoology constituted for the revising of S.Y.B.Sc. Zoology course will be effective from the Academic year 2020-2021 and follow the semester mode. During the meeting Committee prepared syllabus keeping in view of requirements of B.Sc. Zoology learners.

The content has been drawn up to accommodate the widening horizons of the discipline of the Biological sciences. Learners pursuing course would have to develop in-depth understanding various aspects of the subject. The working principles, design guidelines and experimental skills associated with different fields of Zoology such as Genetics, Cell Biology, Physiology, Developmental Biology etc.

Diversity in the life forms needs to be understood by a Zoologist for its socioeconomic capital, in case a student is interested in entrepreneurship, through applied aspects of Zoology. It provides students with the knowledge and skill base that would enable them to undertake further studies in Zoology and help to develop a range of various skills that are relevant to wage employment, self-employment and entrepreneurship.

A special feature of this program has been the introduction of Sericulture, Apiculture and Dairy science and Aquaculture in the areas of applied sciences. The course content also lists the new practical's exercises so that the learners get hands on training experiences of the latest techniques that are in current usage.

Aims

- To nurture interest in the students for the subject of Zoology
- To create awareness of the basic and modern concepts of Zoology
- To study of heredity and its variations
- To orient students to study of the origin of animals and their adaptation to their environments
- To motivate the students for self-employment in various applied branches of Zoology.
- To inculcate good laboratory practices in students and to train them about scientific handling of important instruments.

Outcomes of the syllabus

- Demonstrate in-depth knowledge and understanding about the fundamental concepts, principles and processes in the field of Applied Zoology and its different subfields.
- To deliver procedural knowledge and skills that creates different types of professionals in the field of Zoology and related fields such as, Apiculture, Aquarium fish keeping, Aquaculture, and Sericulture, etc.
- To learn the complexity of life processes, their molecular, cellular and physiological processes, their genetics, evolution and behaviour and their interrelationships with the environment.
- To study concepts, principles and theories related with animal behavior and welfare.
- To understand and interpret biological data to design and conduct experiments to test a hypothesis.
- To accept the legal restrictions & ethical considerations placed for animal welfare
- To understand fundamental aspects of animal science relating to management of animals

S.Y.B.Sc.						
Semester III			Semester IV			
Course 5	Course 6	Course 7 Elective 1	Course 8	Course 9	Course 10 Elective 2	
Unit 1 Fundamentals of Genetics	Unit 1 Study of Nutrition & Excretion	Unit 1 Developmen tal biology	Unit 1 Origin and Evolution of life	Unit 1 Cell Biology	Unit 1 Sericulture	
Unit 2 Chromosome & Heredity	Unit 2 Respiration & Circulation	Unit 2 Ethology	Unit 2 Population Genetics and Evolution	Unit 2 Endomembrane System	Unit 2 Apiculture, and Dairy Science	
Unit 3 Nucleic Acids	Unit 3 Nervous Systen in Invertebrates, Control and Coordination Locomotion & Reproduction	Unit 3 Parasitology	Unit 3 Scientific Aptitude, Methodology, Writing & Ethics	Unit 3 Biomolecules	Unit 3 Aquaculture	
Practical I	Practical II	Practical III	Practical I	Practical II	Practical III	

Syllabus for S.Y.B.Sc. Course – ZOOLOGY To be implemented from Academic year 2020-21 SEMESTER - III

COURSE	UNIT	TOPIC	CREDITS	LECTURES
CODE				/WEEK
USZ0301	I	Fundamentals of Genetics		1
0320301	II	Chromosomes and Heredity	2	1
	III	Nucleic acids	-	1
	I	Nutrition and Excretion		1
	II	Respiration and Circulation	2	1
USZ0302	III	Nervous System in Invertebrates, Control and coordination, Locomotion and Reproduction		1
USZ0303	I	Developmental Biology		1
0320303	II	Ethology	2	1
	III	Parasitology		1
USZOP3		Practical's based on all three courses	3	9

Syllabus for S.Y.B.Sc. Course – ZOOLOGY Semester IV

COURSE CODE	UNIT	TOPIC	CREDITS	LECTURES /WEEK
	I	Origin and Evolution of Life		1
USZO401	II	Population genetics and evolution	2	1
	III	Scientific Aptitude, Methodology, Writing & Ethics		1
USZ0402	I	Cell Biology		1
0520102	II	Endomembrane System	2	1
	III	Biomolecules		1
	I	Sericulture		1
USZO403	II	Apiculture and Dairy Science	2	1
	III	Aquaculture		1
USZOP4		Practical's based on all three courses	3	9

Syllabus for S.Y.B.Sc.

Course - ZOOLOGY

- 1. Syllabus Semester III & IV (Theory and Practical)
- 2. References and Additional Reading
- 3. Scheme of Examination and Paper Pattern (Theory and Practical)

S.Y.B.Sc. SYLLABUS DRAFT

SEMESTER III

USZO301 COURSE-5 Fundamentals of Genetics, Chromosomes and Heredity, Nucleic acids

Sr. No	USZO301 COURSE-5	No. of lecture allotted	Learning pleasure
	Fundamentals of Genetics, Chromosomes and Heredity, Nucleic acids		
	Unit 1: Fundamentals of Genetics	15L	25hrs
	Objectives:		
	> To introduce basic terms of genetics.		
	> To develop conceptual clarity of Mendelian principles of		
	inheritance and other forms and pattern of inheritance		
	Desired outcome:		
	> Learner would comprehend and apply the principles of		
	inheritance to study heredity.		
	> Learner will understand the concept of multiple alleles,		
	linkage and crossing over.		
1.1	Introduction to Genetics	2L	2hrs
	 Definition, Scope and Importance of Genetics. 		
	 Classical and Modern concept of Gene (Cistron, Muton, Recon). 		
	Brief explanation of the following terms: Allele, Wild type		
	and Mutant alleles, Locus, Dominant and Recessive traits,		
	Homozygous and Heterozygous, Genotype and Phenotype,		
	Genome.		

1.2	Mendelian Genetics	8L	12hrs
	 Mendelian Genetics: Monohybrid & Dihybrid Cross, Test 		
	Cross, Back Cross, Mendel 's Laws of Inheritance, Mendelian		
	Traits in Man.		
	■ Exceptions to Mendelian inheritance: Incomplete		
	dominance, Co- dominance, Lethal Genes, Epistasis -		
	Recessive, Double recessive, Dominant and Double		
	dominant.		
	 Chromosome theory of inheritance. 		
	Pedigree Analysis-Autosomal dominant and recessive, X-		
	linked dominant, and recessive.		
1.3	Multiple Alleles and Multiple Genes	03L	06hrs
	Concept of Multiple Alleles, Coat colour in rabbit, ABO		
	and Rh blood group system		
	Polygenic inheritance with reference to skin colour and eye		
	colour in humans.		
	 Concept of Pleiotropy. 		
1.4	Linkage and Crossing Over	02L	05hrs
	 Linkage and crossing over, Types of crossing over, 		
	Cytological basis of crossing over.		
	Unit: 2: Chromosomes and Heredity	15L	26hrs
	Objectives:		
	> To familiarize the learners with the structure, types and		
	classification of chromosomes.		
	> To introduce the concept of sex determination and its types,		
	sex influenced and sex-limited genes.		

	Desired outcome:		
	Learner will comprehend the structure of chromosomes and its types.		
	Learner will understand the mechanisms of sex determination.		
	➤ Learner would be able to correlate the disorders linked to a		
	particular sex chromosome.		
2.1	Chromosomes	04L	08hrs
	Types of Chromosomes–Autosomes and Sex chromosomes		
	Chromosome structure - Heterochromatin, Euchromatin		
	 Classification based on the position of centromere 		
	Endomitosis, Giant chromosomes- Polytene and Lampbrush		
	chromosomes and Significance of Balbiani rings		
2.2	Sex- determination	07L	10hrs
	Chromosomal Mechanisms: XX-XO, XX-XY, ZZ-ZW		
	Sex determination in Honey bees: Haplo-diploidy		
	• Sex determination in <i>Drosophila</i> - Genic balance theory,		
	Intersex, Gynandromorphs		
	 Parthenogenesis 		
	Hormonal influence on sex determination- Freemartin		
	and Sex reversal.		
	Role of environmental factors- <i>Bonelia</i> and Crocodile		
	Barr bodies and Lyon hypothesis		
2.3	Sex linked, sex influenced and sex-limited inheritance.	04L	08hrs
	X-linked: Colour-blindness, Haemophilia		
	Y-linked: Hypertrichosis		
	Sex-influenced genes		
	Sex-limited genes		

	Unit: 3. Nucleic acids	15L	30hrs
	Objectives:		
	> To introduce the learner to the classical experiments proving		
	DNA as the genetic material.		
	> To introduce the learner the structure of nucleic acids		
	and the concept of central dogma of molecular		
	biology.		
	> To familiarize the learner with the concept of gene		
	Desired outcome:		
	Learner will understand the importance of nucleic acids as		
	genetic material.		
	> Learner would comprehend and appreciate the regulation		
	of gene expressions.		
3.1	Genetic material	07L	14hrs
	 Griffith's transformation experiment, Avery-Macleod &McCarty experiment and Hershey Chase experiment of 		
	Bacteriophage infection		
	Chemical composition and structure of nucleic acids		
	 Double helix nature of DNA, Solenoid model of DNA 		
	 Types of DNA – A, B, Z & H forms 		
	 DNA in Prokaryotes - Chromosomal and Plasmid 		
	Extra nuclear DNA - Mitochondria and Chloroplast		
	RNA as a genetic material in virus		
	Types of RNA: Structure and function		
3.2	Flow of genetic information in a eukaryotic cell	05L	08hrs
	 DNA Replication 		
	 Transcription of mRNA 		
	Translation		
	 Genetic code 		

3.3	Gene expression and regulation	03L	08hrs
	 One gene-one enzyme hypothesis /one polypeptide hypothesis 		
	 Concept of Operon 		
	• Lac Operon		

USZO302 COURSE-6

Study of Nutrition and Excretion, Respiration and circulation, Control and coordination, Locomotion and Reproduction

	SEMESTER – III		
Sr. No.	USZO302 (COURSE-VI)	No. of lectures allotted	Learning pleasure
	Nutrition and Excretion, Respiration and Circulation, Nervous system in Invertebrates, Control and Coordination, Locomotion and Reproduction		
	Unit: 1 Nutrition and Excretion	15L	23hrs
	 Objectives: To introduce the concepts of physiology of nutrition, excretion and osmoregulation. To expose the learner to various nutritional apparatus, excretory and osmoregulatory structures in different classes of organisms. 		
	 Desired outcome: Learner would understand the increasing complexity of nutritional, excretory and osmoregulatory physiology in evolutionary hierarchy. Learner would be able to correlate the habit and habitat with nutritional, excretory and osmoregulatory structures. 		
1.1	Comparative study of nutritional apparatus (structure and function): Amoeba, Hydra, Cockroach, Amphioxus, Pigeon, Ruminants.	05L	06hrs
1.2	Physiology of digestion in man.	02L	04hrs

1.3	Comparative study of excretory and osmoregulatory structures and functions. a) Amoeba -Contractile vacuole b) Planaria -Flame cells c) Cockroach- Malpighian tubules	05L	08hrs
1.4	Categorization of animals based on principle nitrogenous excretory products	01L	01hrs
1.5	Structure of kidney, uriniferous tubule and physiology of urine formation in man	02L	04 hr
	Unit: 2 Respiration and Circulation	15L	27hrs
	Objectives: > To introduce the concepts of physiology of respiration and circulation > To expose the learner to various respiratory and circulatory organs in different classes of organisms.		
	Desired outcome: > Learner would understand the increasing complexity of respiratory and circulatory physiology in evolutionary hierarchy. > Learner will be able to correlate the habit and habitat of animals with respiratory and circulatory organs.		
2.1	Comparative study of respiratory organs (structure and function): Earthworm, Spider, Any bony fish (Rohu / Anabas /Clarius), Frog and Pigeon.	03L	06hrs
2.2	Structure of lungs and physiology of respiration in man	02L	03hrs
2.3	Comparative study of circulation: (a) Open and Closed type, (b) Single and Double type.	02L	04hrs

2.4	Types of circulating fluids- Water, Coelomic fluid, Haemolymph, Lymph and Composition of blood	02L	03hrs
2.5	Comparative study of hearts (structure and function): Earthworm, Cockroach, Shark, Frog, Crocodile and Pigeon.	04L	07hrs
2.6	Structure and mechanism of working of heart in man.	02	04hrs
	Unit: 3 Nervous system in Invertebrates, Control and Coordination, Locomotion and Reproduction	15L	25hrs
	Objectives:		
	> To introduce the concepts of physiology of control and		
	coordination, locomotion and reproduction.		
	> To expose the learner to various locomotory and		
	reproductive structures in different classes of organisms.		
	Desired outcome:		
	Learner would understand the process of control and		
	coordination by nervous and endocrine regulation.		
	> Learner would be amazed by various locomotory structures		
	found in the animal kingdom.		
	> Learner would be acquainted with various reproductive		
	strategies present in animals.		
	Nervous system in Invertebrate		
	 Irritability in Paramoecium, nerve net in Hydra, nerve ring 		
	and nerve cord in earthworm.		
3.1	Control and Co-ordination	05L	08hrs
	 Types of neurons based on the structure and function. 		
	Conduction of nerve impulse: Resting potential, Action		
	potential and Refractory period		

3.2	Movement and Locomotion Locomotory organs- structure and functions; a. Pseudopodia in Amoeba (Sol- Gel theory), Cilia in <i>Paramoecium</i> b. Wings and legs in cockroach c. Tube feet in starfish d. Fins of fish	04L	08hrs
3.3	Structure of striated muscle fibre in human and sliding filament theory	02L	02hrs
3.4	Reproduction a. Asexual Reproduction- Fission, Fragmentation, Gemmule formation and Budding b. Sexual reproduction i. Gametogenesis ii. Structure of male and female gametes in human iii. Types of fertilization iv. Oviparity, Viviparity, Ovo-viviparity	04L	07hrs

USZO 303 COURSE-7 Amazing animals, Ethology and Parasitology

	SEMESTER III		
	USZOE1303 (COURSE-VII)		
	Developmental Biology, Ethology and Parasitology,		
	Unit 1: Developmental Biology	15L	23hrs
	Objectives: > To acquaint the learner with key concepts of embryology		
	Desired Outcome:		
	Learner will be able to understand and compare the different types of eggs and sperms		
	Learner will be able to understand and compare the different pre- embryonic stages		
1.1	Introduction of developmental biology	03L	5hrs
1.2	Structure and Types of Eggs and Sperm	02L	4hr
1.3	Fertilization: process and significance	02L	4hr
1.4	Cleavage and Blastulation : Definition, pattern, structure of blastula and its types	02L	4hrs
1.5	Gastrulation and Morphogenetic movements in early development	03L	5hr
1.6	IVF: Technique, Advantages and Disadvantages.	03L	5hr
	Unit: 2 Ethology		
	Objectives: > To equip learner with a sound knowledge of how animals interact with one another and their environment.		

	> To enable the learner to understand different behavioural patterns.		
	Desired Outcome: > Learner would gain insight into different types of animal behaviour and their role in biological adaptations. > Learner would be sensitized to the feelings which are instrumental in social behaviour. Introduction to Ethology:		
2.1	 Definition, History and Scope of Ethology Animal behaviour: Innate and Learned behaviour Types of learning: Habituation, Imprinting and Types of imprinting - Filial and sexual, Classical conditioning Instrumental learning and insight learning. 	04L	06hrs
2.2	 Aspects of animal behavior: Communication in bees and ants Mimicry and colorations Displacement activities, Ritualization Migration in fish, schooling behaviour Habitat selection, territorial behavior 	07L	12hrs
2.3	 Social behaviour: Social behaviour in primates-Hanuman langur Elements of socio-biology: Altruism and Kinship 	04L	08hrs
	Unit: 3 Parasitology	15L	27hrs
	 Objectives: To acquaint the learner with the concepts of parasitism and its relationship in the environment. To introduce the learner to modes of transmission of 		

	parasites.		
	Desired Outcome:		
	Learner would understand the general epidemiological		
	aspects of parasites that affect humans and take simple		
	preventive measures for the same.		
	> Learner would comprehend the life cycle of specific		
	parasites, the symptoms of the disease and its		
	treatment.		
	Introduction to Parasitology and host specificity ■ Definitions: Parasitism, Host, Parasite, Vector-		
	biological and mechanical		
3.1	 Parasitic adaptations in Ectoparasites and Endoparasites 	04 L	06hrs
	 Host Specificity - parasite relationship, structural specificity, physiological specificity and ecological specificity 		
	Life cycle, pathogenicity, control measures and treatment		
	Leshmania donovani		
3.2	Liver fluke	06L	06hrs
	• Leech		
	• Flea		
2.2	Parasitological significance	٥٢١	026
3.3	 Zoonosis- Bird flu, Anthrax, Rabies and Toxoplasmosis 	05L	03hrs

SEMESTER III PRACTICAL USZOP1 (COURSE V)

	Practical USZOP1 (COURSE V)
1	Extraction and detection of DNA
2	Extraction and detection of RNA.
3	Mounting of Barr bodies.
4	Study of Polytene chromosome.
5	Study of mitosis- temporary squash preparation of Onion root tip
6	Detection of blood groups and Rh factor.
7	Problems in genetics
8	Chromosome morphology: Metaphase spreadsheet (photograph to be provided)
9	Pedigree analysis
10	Problems on molecular biology

SEMESTER III PRACTICAL USZOP2 (COURSE VI)

	PRACTICAL USZOP2 (COURSE VI)
1	Urine analysis—Normal and abnormal constituents
2	Detection of ammonia in water excreted by fish
3	Detection of uric acid from excreta of Birds
4	Study of striated and nonstriated muscle fiber
5	Study of nutritional Apparatus (Amoeba, Hydra, Earthworm, Pigeon, Ruminant stomach)
6	Study of respiratory structures:
	a. Gills of Bony fish and Cartilaginous fish.
	b. Lungs of Frog
	c. Lungs of Mammal.
	d. Accessory respiratory structure in Anabas (Labyrinthine organ)
	e. Air sacs of Pigeon
7	Study of locomotory organs (Amoeba, Unio, Cockroach, Starfish, Fish, and Birds)
8	Study of hearts (Cockroach, Shark, Frog, Calotes, Crocodile, Mammal)
9	Study of permanent slides on topic of Reproduction
	a. Sponge gemmules
	b. Hydra budding
	c. T.S. of mammalian testis
	d. T.S. of mammalian ovary
10	Field visit- Visit to vermicomposting unit or Visit to Aquarium or wild life sanctuaries and submission of report. (Report may be submitted in a group not exceeding five students).

SEMESTER III PRACTICAL USZOP3 (COURSE VII)

	PRACTICAL USZOP3 (COURSE VII)
1	Study of the following permanent slides- Mammalian sperm and ovum
2	Classification of Eggs— fish, frog and hen
3	Study of the following permanent slides -
	Cleavage, blastula and gastrula (Amphioxus, Frog and Bird)
4	Study of ethological aspects:
	a) Warning colouration
	b) Animal instinct
	c) Imprinting
5.	Study of ethological aspects:
	d) Communication in animals: Chemical signals and Sound signals
	e) Displacement activities in animals: Courtship and mating behaviour in animals and Ritualization
6	Study of Endoparasites:
	a. Leishmania
	b. Liver fluke
7	Study of Ectoparasites:
	a. Leech
0	b. Flea
8	Parasitic adaptations: Scolex and mature proglottid of Tapeworm
9	Preparation and staining of temporary slides

Note -The practical's may be conducted by using specimens authorised by the wildlife and such other regulating authorities though it is strongly recommended that the same should be taught by using photographs/audio-visual aids/ simulations / models, etc. as recommended by the UGC and as envisaged in the regulations of the relevant monitoring bodies. No new specimens, however, shall be procured for the purpose of conducting practicals mentioned here-in-above.

#There shall be at least one excursion/field trip.

SEMESTER-III

REFERENCE BOOKS AND ADDITIONAL READING COURSE-V (USZO301)

- 1. Principles of Genetics. Gardner, E.J., Simmons, M.J and Snustad, D.P. John Wiley and Sons
- 2. Concepts of Genetics. Klug, W.S., Cummings M.R., Spencer, C.A. Benjamin Cummings.
- 3. Genetics- A Molecular Approach. Russell, P. J Benjamin Cummings.
- **4.** Genetics: Analysis of Genes and Genomes. Daniel L., Hartl, Elizabeth W. Jones Jones & Bartlett Publishers
- 5. Introduction to Genetic Analysis. Griffiths, A.J.F., Wessler. S.R., Lewontin, R.C. and Carroll, S.B. W. H. Freeman and Co.
- 6. Cell Biology, Genetics, Molecular Biology Evolution and Ecology. Verma P.S. and Agrawal P.K., 9th edition, S. Chand Publication, New Delhi.
- 7. Principles of Genetics Eight edition- Eldon john Gardner, Michael J. Simmons, D. Peter Snustad
- 8. Genetics- Weaver, Hedrick, third edition, Mc Graw Hill Education
- 9. Genetics A Mendelian approach Peter Russel, Pearson Benjamin Cummings
- **10.** Genetics A conceptual approach, Benjamin A. Pierce, Southwestern University, W.H. Freeman and company, New York
- 11. Genetics, Third Edition, Monroe W. Strickberger
- **12.** Genetics from gene to genome, third edition, Leeland H. Hartwell, Leeroy Hood, Michael 7. L. Goldberg, Ann E. Reynolds, Lee M. Silver, McGraw Hill Education

SEMESTER-III

REFERENCE BOOKS AND ADDITIONAL READING COURSE-VI (USZO302)

- 1. Vertebrate Zoology Volume I- Jordan and Verma, S. Chand and Co.
- 2. Invertebrate Zoology Volume II- Jordan and Verma, S. Chand and Co.
- **3.** Invertebrate Zoology- Majupuria T. C., Nagin S.and Co.
- **4.** Chordate Zoology- Dhami P. S. and Dhami J. K., R. Chand and Co.
- 5. Invertebrate Zoology- Dhami P. S. and Dhami J. K., R. Chand and Co.
- **6.** Introduction to Vertebrates- Moore Cambridge University- Low Priced Edition.
- **7.** Zoology- Miller S. A. and Harley J. B., Tata McGraw Hill.
- **8.** Modern Textbook of Zoology, Invertebrates, Kotpal R. L.
- **9.** Biological Science, Taylor D.J., Stout G.W., Green N.P.O, Soper R., Cambridge University Press.

SEMESTER -III REFERENCE BOOKS AND ADDITIONAL READING

COURSE-VII (USZO303)

- 1. Biology. E. P. Solomon, L. R. Berg, D. W. Martin, Thompson Brooks/Cole
- **2.** Animal Behavior: Mechanisms, Ecology and Evolution Stephen Vessey, Elizabeth Jacob, S. H. Vessey and L. C. Drickamer, McGraw-Hill.
- 3. Animal Behaviour- David McFarland
- 4. Animal Behaviour- Mohan Arora
- 5. Animal Behaviour- Reena Mathur
- **6.** An introduction to Animal Behaviour- Manning and Dawkins
- 7. Animal Behaviour-Agarwal
- **8.** Principles of Animal Communication. Bradbury, J.W. and S.L. Vehrencamp. Sinauer Assoc. Sunderland, Massachsets, USA.
- **9.** The biology of Behaviour. Eibl-Eibesfeldt, I. Ethology. Holt, Rineheart & Winston, New York.
- 10. The Book of Indian Dogs-S. Theodore Baskaran (2017) Aleph Book Company
- 11. Newsletters- Animal Welfare Board of India- awbi.org
- **12.** Candler, W., & Kumar, N. (1998). India: The dairy revolution: The impact of dairy development in India and the World Bank's contribution. World Bank Publications.
- **13.** Park, Y. W., & Haenlein, G. F. (Eds.). (2013). Milk and dairy products in human nutrition: production, composition and health. John Wiley & Sons.
- **14.** Venkatasubramanian, V., Singh, A. K., & Rao, S. V. N. (2003). Dairy development in India: An appraisal of challenges and achievements. Concept Publishing Company
- **15.** Shrivastava, J. S. M. (2008). Dairy Development in The New Millennium (The Second White Revolution). Deep and Deep Publications.
- **16.** Developmental Biology- 5th Edition, Scot F. Gilbert, Sinauer Associates Inc.
- 17. Developmental Biology- Subramoniam T., Narosa Publishers.
- **18.** Developmental Biology-BerrilN.J., Tata McGraw –Hill Publication.
- 19. Essential Reproduction-Martin H. Johnson, Wiley-Blackwell Publication.
- 20. Chick Embryology- Bradley M. Pattern.
- 21. Embryology-Mohan P. Arora.
- 22. Chordate Embryology-Dalela, Verma and Tyagi

SCHEME OF EXAMINATION

- (a) One Theory examination of seventy-five (75) marks per course per semester should be conducted as per the following skeleton question paper pattern.
- (b) One practical examination of fifty (50) marks per course each should be conducted at the end of every semester.
- (c) Internal assessment and overall performance twenty-five (25) marks.

SKELETON PAPER PATTERN FOR THEORY EXAMINATION

NOTE: All Questions are compulsory.

Figures to the right indicate full marks.

Draw neat labelled diagrams wherever necessary.

Question number 1, 2 and 3 will be 20 Marks each and Question 4 for 15 Marks

Time: 2.5 hours Total marks: 75

- Q.1. Unit I may have questions carrying 12 and 8 marks OR of 10 marks each with 100% internal options
- Q.2. Unit II may have questions carrying 12 and 8 marks OR of 10 marks each with 100% internal options
- Q.3. Unit III may have questions carrying 12 and 8 marks OR of 10 marks each with 100% internal options
- Q.4. Unit I, II and III (Any3 out of 6)
 For Q.1, 2, 3 and 4 there shall be 100% internal option.

PRACTICAL USZOP-I (COURSE V)

Skeleton-Practical Examination Question Paper Pattern

Time: 3 hrs Marks: 50 **Major Question** 15 marks Q1. Extraction and detection of DNA Q1. Extraction and detection of RNA **Minor Question** 07 marks Q2. Mounting of Barr bodies OR Q2. Study of mitosis-Temporary squash preparation of Onion root tip OR Q2. Detection of blood groups and Rh factor Q3. Problems on Genetics and Molecular biology (Transcription /Genetic code) (01 problem each) 10 marks Q4. Identification 08 marks a. Chromosome morphology b. Pedigree analysis Q5. Viva and Journal 10 marks

PRACTICAL USZOP-2 (COURSE VI)

Skeleton-Practical Examination Question Paper Pattern

Time: 3 hrs	Marks: 50
Major Question	15 marks
Q1. Urine analysis—Normal and abnormal constituents	
Minor Question	10 marks
Q2. Detection of ammonia in water excreted by fish OR	
Q2. Detection of uric acid from excreta of Birds	
Q3. Identification a. Nutritional apparatus b. Respiratory structures c. Locomotory organs d. Study of hearts e. Permanent slides on reproduction	15 marks
Q4. Viva	05 marks
Q5. Journal	05 marks

PRACTICAL USZOP-3 (COURSE VII)

Skeleton - Practical Examination Question Paper Pattern

Time: 3 hrs Marks: 50

Major Question 15 marks

Q1. Preparation and staining of temporary slides

Q2. Identify and describe as per instructions (3 marks each)

15 marks

a. Any one permanent slide classification of Egg– fish, frog and hen

b. Any one permanent slide Cleavage, blastula and gastrula (Amphioxus, Frog and Bird)

c. Any one from Animal behavior

d. Any one from Ectoparasites

e. Any one from Endoparasites

Q3. Visit to IVF center report.

10 marks

Q4. Viva and Journal

10 marks

SEMESTER IV USZO401 COURSE-8

Origin and Evolution of Life, Population Genetics, Scientific Attitude, Methodology, Scientific Writing and Ethics in Scientific Research

	SEMESTER IV		
	USZO401 COURSE-8		
	Origin and Evolution of Life, Population and Evolutionary Genetics, Scientific Attitude, Methodology, Scientific Writing and Ethics in Scientific Research.		
	Unit 1: Origin and Evolution of Life	15L	30hrs
	Objectives: > To impart scientific knowledge about how		
	life originated and evolved on our planet.		
	 Desired outcomes: Learner will gain insight about origin of life. Learner will ponder and critically view the different theories of evolution. 		
1.1	 Introduction Origin of Universe Chemical evolution - Miller-Urey experiment, Haldane and Oparin theory Origin of Life Origin of Eukaryotic cell 	05L	10hrs
1.2	 Evidences in favour of Organic evolution Evidences from: Geographical distribution, Palaeontology, Anatomy, Embryology, Physiology and Genetics 	04L	08hrs

	Theories of organic evolution	06L	12hrs
1.3	Theory of Lamarck		
	 Theory of Darwin and Neo Darwinism 		
	Mutation Theory		
	 Modern Synthetic theory 		
	 Weismann's Germplasm theory 		
	 Neutral theory of Molecular evolution 		
	Unit: 2: Population Genetics and Evolution	15L	28hrs
	Objectives:		
	> To develop knowledge and understanding of genetic		
	variability within a population and how the change		
	in the gene pool leads to evolution of species		
	Desired outcomes:		
	> Learner would understand the forces that cause		
	evolutionary changes in natural populations		
	> Learner would comprehend the mechanisms of		
	speciation		
	> Learner will be able to distinguish between		
	microevolution, macroevolution and		
	megaevolution		
2.1	Introduction to Population genetics	01L	03hrs
	Definition		
	 Brief explanation of the following terms: 		
	 Population, Gene pool, Allele frequency, 		
	Genotype frequency, Phenotype		
	frequency, Microevolution		

2.2	Population genetics	06L	10hrs
	 Hardy- Weinberg Law 		
	 Factors that disrupt Hardy Weinberg 		
	equilibrium: Mutation, Migration (Gene flow),		
	Non-random mating (Inbreeding, inbreeding		
	depression, Assortative Mating-Positive and		
	Negative, Dis- assortative mating), Genetic drift		
	(Sampling error, Fixation, Bottleneck effect and		
	Founder effect)		
	 Natural Selection 		
	 Patterns of Natural Selection 		
	 Stabilizing selection 		
	 Directional selection (Examples: Peppered moth, 		
	Antibiotic resistance in bacteria, Pesticide		
	resistance)		
	Disruptive selection		
2.3	Evolutionary genetics	08L	15hrs
	 Genetic variation: Genetic basis of Variation- 		
	Mutations and Recombination (crossing over		
	during meiosis, independent assortment of		
	chromosomes during meiosis and random union		
	of gametes during fertilization)		
	 Nature of genetic variations: Genetic 		
	polymorphism, Balanced polymorphism,		
	Mechanisms that preserve balanced		
	Polymorphism- Heterozygote advantage and		
	frequency dependent selection,		
	 Neutral variations 		
	 Geographic variation (Cline) 		

	 Species Concept: Biological species concept and 		
	evolutionary species concept		
	 Speciation and Isolating mechanisms: Definition 		
	and Modes of speciation (Allopatric, Sympatric,		
	Parapatric and Peripatric)		
	Geographical isolation		
	 Reproductive isolation and its isolating 		
	mechanisms (Prezygotic and Postzygotic)		
	Macroevolution and Megaevolution: Concept and		
	Patterns of macroevolution (Stasis,		
	Preadaptation /Exaptation, Mass extinctions,		
	Adaptive radiation and Coevolution),		
	Megaevolution		
	Unit 2. Caiantifia Antituda Mathadalagu	15L	32hrs
	Unit 3: Scientific Aptitude, Methodology,	136	321113
	Writing and Ethics		
	Writing and Ethics Objective:		
	Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical		
	Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical thinking and analysis.		
	Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical		
	 Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical thinking and analysis. The learner will develop the skills of scientific communication. Learner will understand the ethical aspects of 		
24	Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical thinking and analysis. The learner will develop the skills of scientific communication. Learner will understand the ethical aspects of research		
3.1	Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical thinking and analysis. The learner will develop the skills of scientific communication. Learner will understand the ethical aspects of research Process of science:	4L	10hrs
3.1	 Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical thinking and analysis. The learner will develop the skills of scientific communication. Learner will understand the ethical aspects of research Process of science: A dynamic approach to investigation: The 	4L	10hrs
3.1	 Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical thinking and analysis. The learner will develop the skills of scientific communication. Learner will understand the ethical aspects of research Process of science: A dynamic approach to investigation: The Scientific method, Deductive reasoning and 	4L	10hrs
3.1	 Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical thinking and analysis. The learner will develop the skills of scientific communication. Learner will understand the ethical aspects of research Process of science: A dynamic approach to investigation: The Scientific method, Deductive reasoning and inductive reasoning, Critical thinking, Role of 	4L	10hrs
3.1	 Writing and Ethics Objective: To inculcate scientific temperament in the learner. Desired outcome: The learner will develop qualities such as critical thinking and analysis. The learner will develop the skills of scientific communication. Learner will understand the ethical aspects of research Process of science: A dynamic approach to investigation: The Scientific method, Deductive reasoning and 	4L	10hrs

	between method and methodology,		
	characteristics, types		
	Steps in the Scientific method: Identification of		
	research problem, formulation of research		
	hypothesis, testing the hypothesis using		
	experiments or surveys, preparing research/study		
	design including methodology and execution		
	(appropriate controls, sample size, technically		
	sound, free from bias, repeat experiments for		
	consistency), documentation of data, data analysis		
	and interpretation, results and conclusions		
	● Dissemination of data: Reporting results to		
	scientific community (publication in peer-		
	reviewed journals, thesis, dissertation, reports,		
	oral presentation, poster presentation)		
	 Application of knowledge: Basic research, Applied 		
	research and Translational research		
0.0			4 = 1
3.2	Scientific writing:Structure and components of a research paper:	7L	15hrs
	preparation of manuscript for publication of		
	research paper- title, authors and their affiliations,		
	abstract, keywords and abbreviations, introduction,		
	material and methods, results, discussion,		
	conclusions, acknowledgement, bibliography;		
	figures, tables and their legends		
3.3	Writing a review paper	03L	05hrs
	 Structure and components of review 		
	 Report writing and types of report 		
	 Computer application: Plotting of graphs, 		

	Statistical analysis of data. Internet and its		
	application in research-Literature survey, online		
	submission of manuscript for publication		
3.4	Ethics	03L	05hrs
	Ethics in animal research: The ethical and sensitive		
	care and use of animals in research, teaching and		
	testing, approval from Dissection Monitoring		
	Committee (DMC)		
	• Ethics in clinical research: Approval from clinical		
	research ethics committee or/and informed		
	consent		
3.5	Plagiarism	1L	2hrs

SEMESTER IV USZO402 COURSE-9

Cell Biology, Endo membrane System and Biomolecules

	USZO402 COURSE-9		
	Cell Biology, Endo membrane System and		
	Biomolecules		
	Unit 1: Cell Biology	15L	24hrs
	Objective:		
	> To study the structural and functional organization of		
	cell with an emphasis on nucleus, plasma membrane		
	and cytoskeleton.		
	Desired outcome:		
	Learner would acquire insight into the composition of		
	the transport mechanisms adopted by the cell and its		
	organelles for its maintenance and composition of cell		
1.1	Introduction to cell biology	02L	04hrs
	 Definition and scope 		
	 Cell theory 		
	 Generalized prokaryotic, eukaryotic cell: size, shape and 		
	structure		
1.2	Nucleus	05L	06hrs
	 Size, shape, number and position 		
	 Structure and functions of interphase nucleus 		
	 Ultrastructure of nuclear membrane and pore complex 		
	 Nucleolus: general organization, chemical composition 		
	& functions		
	 Nuclear sap/ nuclear matrix 		

	 Nucleocytoplasmic interactions 		
1.3	Plasma membrane	04L	08hrs
	Fluid Mosaic Model		
	 Junctional complexes 		
	 Membrane receptors 		
	 Modifications: Microvilli and Desmosomes 		
1.4	Transport across membrane	02L	04hrs
	 Diffusion and Osmosis 		
	 Transport: Passive and Active 		
	 Endocytosis and Exocytosis 		
1.5	Cytoskeletal structures		
	 Microtubules: Composition and functions 		
	 Microfilaments: Composition and functions 		
	Unit: 2: Endomembrane System	15L	28hrs
	Objective:		
	> To acquaint the learner with ultrastructure of cell		
	organelles and their functions		
	Desired outcome:		
	Learner would appreciate the intricacy of endomembrane system.		
	Learner would understand the interlinking of		
	endomembrane system for functioning of cell		
2.1	Endoplasmic reticulum (ER):	01L	03hrs
	 General morphology of endomembrane system, 		
	ultrastructure, types of ER and biogenesis of ER		
	• Functions of Rough Endoplasmic Reticulum (RER) and		
	Smooth Endoplasmic Reticulum (SER)		

2.2	Golgi complex: Ultrastructure of Golgi complex, functions	06L	10hrs
	of Golgi complex (protein glycosylation, lipid and		
	polysaccharide metabolism, protein sorting and secretion,		
	Golgi Anti-Apoptotic Protein -GAAP)		
2.3	Lysosomes: Origin, occurrence, polymorphism and	03L	5hrs
2.3	Lysosomes: Origin, occurrence, polymorphism and functions; Peroxisomes: Origin, morphology & functions	USL	31113
	runctions, i croxisomes. Origin, morphology & functions		
2.4	Mitochondria: Ultrastructure, chemical composition,	05L	10hrs
	functions of mitochondria and bioenergetics (Chemical		
	energy & ATP, Krebs cycle, respiratory chain and		
	oxidative phosphorylation)		
	Unit: 3 Biomolecules	15L	30hrs
	Objective:		
	> To give learner insight into the structure of biomolecules		
	and their role in sustenance of life.		
	Desired outcome:		
	> The learner will realize the importance of biomolecules		
	and their clinical significance.		
3.1	Biomolecules:	02L	05hrs
	 Concept of micro molecules and macromolecules 		
3.2	Carbohydrates:	04L	08hrs
	 Definition classification, properties and isomerism, glycosidic bond 		
	 Structure of Monosaccharides (glucose and fructose); 		
	Oligosaccharides (lactose and sucrose); Polysaccharides		
	(cellulose, starch, glycogen and chitin)		
	 Biological role and clinical significance 		

3.3	Amino Acids and Proteins:	05L	08hrs
	 Basic structure, classification of amino acids, 		
	• Essential and Non-essential amino acids, Peptide bond,		
	 Protein conformation: Primary, Secondary, Tertiary, Quaternary 		
	 Types of proteins – Structural (collagen) and 		
	functional proteins (haemoglobin)		
	 Biological role and clinical significance 		
3.4	Lipids:	04L	05hrs
	 Definition, classification of lipids with examples, ester linkage 		
	 Physical and chemical properties of lipids 		
	 Saturated and unsaturated fatty acids 		
	• Essential fatty acids; Triacylglycerols; Phospholipids		
	(lecithin and cephalin); Steroids (cholesterol)		
	 Biological role and clinical significance 		
3.5	Vitamins:	02L	04hrs
	 Water soluble vitamins (e.g. Vit C, Vit B₁₂) 		
	 Lipid soluble vitamins (e.g. Vit A, Vit D) 		
	 Biological role and clinical significance 		
1			

SEMESTER IV USZO403 COURSE-10 ECONOMIC ZOOLOGY

Objectives: > To comprehend the functioning of sericulture industry and its scope in India. > To study the varieties of silk-worms and host plants. > To critically study the life history and rearing of Bombyx mori, harvesting, processing of cocoon, production of silk and diseases afflicting silk-worms. Desired Outcome: > Learner would understand the basics of the functioning of sericulture industry and its scope in India. > Learner shall gain knowledge on the varieties of silk-worms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture 1.2 Varieties of silk worm, host plants 02L 4h 1.3 Life history and rearing of Bombyx mori 03L 8h 1.4 Harvesting and processing of cocoon 02L 4h 1.5 Reeling and extraction of silk 03L 4h		USZO403 COURSE 10		
Objectives: To comprehend the functioning of sericulture industry and its scope in India. To study the varieties of silk-worms and host plants. To critically study the life history and rearing of Bombyx mori, harvesting, processing of cocoon, production of silk and diseases afflicting silk-worms. Desired Outcome: Learner would understand the basics of the functioning of sericulture industry and its scope in India. Learner shall gain knowledge on the varieties of silk-worms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture 1.2 Varieties of silk worm, host plants 02L 4h 1.3 Life history and rearing of Bombyx mori 03L 8h 1.4 Harvesting and processing of cocoon 02L 4h 1.5 Reeling and extraction of silk 03L 4h		ECONOMIC ZOOLOGY		
> To comprehend the functioning of sericulture industry and its scope in India. > To study the varieties of silk-worms and host plants. > To critically study the life history and rearing of Bombyx mori, harvesting, processing of cocoon, production of silk and diseases afflicting silk-worms. Desired Outcome: > Learner would understand the basics of the functioning of sericulture industry and its scope in India. > Learner shall gain knowledge on the varieties of silk- worms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture 1.2 Varieties of silk worm, host plants 1.3 Life history and rearing of Bombyx mori 1.4 Harvesting and processing of cocoon 1.5 Reeling and extraction of silk 1.6 Reeling and extraction of silk 1.7 A Harvesting and processing of cocoon 1.8 A Harvesting and extraction of silk 1.9 A Harvesting and extraction of silk 1.10 A Harvesting and extraction of silk 1.11 A Harvesting and extraction of silk 1.12 A Harvesting and extraction of silk 1.13 A Harvesting and extraction of silk		UNIT 1: Sericulture	15L	30 hrs
and its scope in India. > To study the varieties of silk-worms and host plants. > To critically study the life history and rearing of Bombyx mori, harvesting, processing of cocoon, production of silk and diseases afflicting silk-worms. Desired Outcome: > Learner would understand the basics of the functioning of sericulture industry and its scope in India. > Learner shall gain knowledge on the varieties of silk- worms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture 02L 4h 1.2 Varieties of silk worm, host plants 02L 4h 1.3 Life history and rearing of Bombyx mori 03L 8h 1.4 Harvesting and processing of cocoon 02L 4h 1.5 Reeling and extraction of silk 03L 4h		Objectives:		
> To critically study the life history and rearing of Bombyx mori, harvesting, processing of cocoon, production of silk and diseases afflicting silk-worms. Desired Outcome: > Learner would understand the basics of the functioning of sericulture industry and its scope in India. > Learner shall gain knowledge on the varieties of silk- worms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture 1.2 Varieties of silk worm, host plants 1.3 Life history and rearing of Bombyx mori 1.4 Harvesting and processing of cocoon 1.5 Reeling and extraction of silk 1.6 Reeling and extraction of silk 1.7 Reeling and extraction of silk 1.8 Reeling and extraction of silk		. , , , , , , , , , , , , , , , , , , ,		
Bombyx mori, harvesting, processing of cocoon, production of silk and diseases afflicting silk-worms. Desired Outcome: Learner would understand the basics of the functioning of sericulture industry and its scope in India. Learner shall gain knowledge on the varieties of silk-worms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture O2L 4h 1.2 Varieties of silk worm, host plants O2L 4h 1.3 Life history and rearing of Bombyx mori O3L 8h 1.4 Harvesting and processing of cocoon O2L 4h O3L 4h O3L 4h		> To study the varieties of silk-worms and host plants.		
production of silk and diseases afflicting silk-worms. Desired Outcome: Learner would understand the basics of the functioning of sericulture industry and its scope in India. Learner shall gain knowledge on the varieties of silkworms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture O2L 4h 1.2 Varieties of silk worm, host plants O2L 4h 1.3 Life history and rearing of Bombyx mori O3L 8h 1.4 Harvesting and processing of cocoon O2L 4h 1.5 Reeling and extraction of silk		> To critically study the life history and rearing of		
Desired Outcome: > Learner would understand the basics of the functioning of sericulture industry and its scope in India. > Learner shall gain knowledge on the varieties of silkworms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture 1.2 Varieties of silk worm, host plants 1.3 Life history and rearing of Bombyx mori 1.4 Harvesting and processing of cocoon 1.5 Reeling and extraction of silk 1.6 Reeling and extraction of silk 1.7 Reeling and extraction of silk 1.8 Reeling and extraction of silk		Bombyx mori, harvesting, processing of cocoon,		
 Learner would understand the basics of the functioning of sericulture industry and its scope in India. Learner shall gain knowledge on the varieties of silkworms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. Introduction and scope of sericulture Varieties of silk worm, host plants Life history and rearing of Bombyx mori Harvesting and processing of cocoon Reeling and extraction of silk Reeling and extraction of silk 		production of silk and diseases afflicting silk-worms.		
of sericulture industry and its scope in India. Learner shall gain knowledge on the varieties of silkworms, host-plants and aspects on silk extraction and the diseases afflicting silkworms. 1.1 Introduction and scope of sericulture 1.2 Varieties of silk worm, host plants 1.3 Life history and rearing of Bombyx mori 1.4 Harvesting and processing of cocoon 1.5 Reeling and extraction of silk 1.6 Reeling and extraction of silk 1.7 Reeling and extraction of silk 1.8 Parieties of silk worm and its scope in India. 1.9 Learner shall gain knowledge on the varieties of silk-worms and spects on silk extraction and the varieties of silk-worms. 1.1 Introduction and scope of sericulture 1.2 Varieties of silk worm, host plants 1.3 Life history and rearing of Bombyx mori 1.4 Harvesting and processing of cocoon 1.5 Reeling and extraction of silk		Desired Outcome:		
 Learner shall gain knowledge on the varieties of silkworms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. Introduction and scope of sericulture Varieties of silk worm, host plants Life history and rearing of Bombyx mori Harvesting and processing of cocoon Reeling and extraction of silk Reeling and extraction of silk 		Learner would understand the basics of the functioning		
worms, host-plants and aspects on silk extraction and the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture 1.2 Varieties of silk worm, host plants 1.3 Life history and rearing of Bombyx mori 1.4 Harvesting and processing of cocoon 1.5 Reeling and extraction of silk 1.6 Reeling and extraction of silk 1.7 Reeling and extraction of silk 1.8 Reeling and extraction of silk		of sericulture industry and its scope in India.		
the diseases afflicting silk-worms. 1.1 Introduction and scope of sericulture 1.2 Varieties of silk worm, host plants 1.3 Life history and rearing of Bombyx mori 1.4 Harvesting and processing of cocoon 1.5 Reeling and extraction of silk 1.6 A harvesting and extraction of silk 1.7 A harvesting and extraction of silk 1.8 A harvesting and extraction of silk 1.9 A harvesting and extraction of silk 1.1 A harvesting and extraction of silk		> Learner shall gain knowledge on the varieties of silk-		
1.1Introduction and scope of sericulture02L4h1.2Varieties of silk worm, host plants02L4h1.3Life history and rearing of Bombyx mori03L8h1.4Harvesting and processing of cocoon02L4h1.5Reeling and extraction of silk03L4h		worms, host-plants and aspects on silk extraction and		
1.2Varieties of silk worm, host plants02L4h1.3Life history and rearing of Bombyx mori03L8h1.4Harvesting and processing of cocoon02L4h1.5Reeling and extraction of silk03L4h		the diseases afflicting silk-worms.		
1.3Life history and rearing of Bombyx mori03L8h1.4Harvesting and processing of cocoon02L4h1.5Reeling and extraction of silk03L4h	1.1	Introduction and scope of sericulture	02L	4hrs
1.4 Harvesting and processing of cocoon 1.5 Reeling and extraction of silk 03L 4h	1.2	Varieties of silk worm, host plants	02L	4hrs
1.5 Reeling and extraction of silk 03L 4h	1.3	Life history and rearing of <i>Bombyx mori</i>	03L	8hrs
Treesing and entraction of sim	1.4	Harvesting and processing of cocoon	02L	4hrs
	1.5	Reeling and extraction of silk	03L	4hrs
1.6 Diseases and control measures 03L 4h	1.6	Diseases and control measures	03L	4hrs

	UNIT2: APICULTURE AND DAIRY SCIENCE	07L	08hrs
2.1.	2.1.1 Methods of bee keeping and management	0.2	00110
	 Introduction to different species of honey bees 		
	used in apiculture.		
	 Selection of flora and bees for apiculture. 		
	Advantages and disadvantages of traditional and modern		
	methods of apiculture.		
	 Pests and Bee enemies- Wax moth, wasp, black ants, bee- 		
	eaters, king crow and disease control		
	2.1.2 Economic importance		
	Honey- Production, chemical composition and economic		
	importance		
	Bee wax- Composition and economic importance.		
	 Role of honey bee in pollination. 		
2.2	DAIRY SCIENCE	08L	08hrs
	Objectives:		
	> To study the role of dairy development in rural India		
	> To study various techniques employed in dairy science.		
	Desired Outcome:		
	Learner shall understand the dairy animal's management		
	and role of dairy development in rural Indian economy.		
	Learner would gain knowledge of various Dairy processing		
	techniques along with knowledge of milk and milk products.		
	2.2.1 Dairy development in India		
	Role of dairy development in rural economy, employment		
	opportunities		
	2.2.2 Dairy Processing		
	• Filtration, cooling, chilling, clarification, pasteurization,		

	freezing		
2.	2.3 Milk and milk products		
•	Composition of milk		
•	Types of milk:		
a) Buffalo milk		
b) Cow milk (A1 &A2)		
•	Whole milk and toned milk		
-	Milk products		
	UNIT 3: AQUACULTURE	15L	24hrs
	Objectives		
>	To study the commercial and industrial significance/value		
	of animals.		
>	To discusses the techniques/methods of rearing of animals for		
	commercial usage and the prerequisites for their successful		
	maintenance and sustenance.		
D	esired outcomes		
>	Understand the culture techniques of prawn, pearl and fish.		
>	Understand silkworms rearing and their products.		
>	Understand the Bee keeping equipment's and apiary management.		
>	Understand dairy animals' management, the breeds and		
	diseases of goats and learn the testing of egg and milk quality.		
>	Learn various concepts of lac cultivation.		
>	Be aware of a broad array of career options and activities		
	in human medicine, biomedical research and allied health		
	professions.		

3.1	Pisciculture:	04L	8rs
	 Definition and scope of fishery resources in India 		
	 Finfish culture – monoculture and polyculture 		
	Cage culture		
	 Fish seed transport 		
	 Fish diseases symptoms and control 		
3.2	Prawn/shrimp culture: Sources, seed, culture methods –	04L	8hrs
	 Giant fresh water prawn (Macrobrachium rosenbergii) 		
	 White shrimp (Penaeus vannamei) 		
3.3	Pearl culture:	04L	8hrs
	 Pearl producing species and their distribution 		
	 Pearl culture methods 		
	Composition of pearl		
3.4	Culture of seaweeds:	03L	
	 Seaweed species of commercial importance 		
	Culture methods		
	 Products of commercial importance from seaweeds – 		
	Emerging trends in farming in open seas.		

Note -The practical's may be conducted by using specimens authorised by the wildlife and such other regulating authorities though it is strongly recommended that the same should be taught by using photographs/audio-visual aids/ simulations / models, etc. as recommended by the UGC and as envisaged in the regulations of the relevant monitoring bodies. No new specimens, however, shall be procured for the purpose of conducting practical's mentioned here-in-above.

There shall be at least one excursion/field trip

	SEMESTER IV
	Practical USZOP 1 (Course - VIII)
1	Study of population density by Line transect method & Quadrant method and calculate different diversity indices. • Index of Dominance
	Index of frequencyRarity Index
	Shannon Index
2	Study of prokaryotic cells (bacteria) by Crystal violet staining technique
3	Study of eukaryotic cells (WBCs) from blood smear by Leishman stain
4	Identification and study of fossils:Arthropods: TrilobiteMollusca: Ammonite
5	 Identification of: Allopatric speciation (Cyprinodont species) Sympatric speciation (Hawthorn fly and Apple maggot fly)
6	Preparation of Review/ Bibliography / Abstract writing
7	Preparation of Power Point Presentation based on research paper.
8	Review writing based on programmes telecast by Doordarshan, Gyandarshan, UGC programmes or other media sources

	SEMESTER IV
	Practical USZOP 2 (Course - IX)
1	Study of permeability of cell through plasma membrane (osmosis in blood cells)
2	Measurement of cell diameter by occulometer (by using permanent slide)
3	Qualitative tests for carbohydrates (Molisch 's test, Benedicts test, Barfoed's test, Anthrone test)
4	Qualitative tests for protein (Ninhydrin test, Biuret test, Millon's test, Xanthoproteic test)
5	Qualitative test for lipids (Solubility test, Sudan III test)
6	Study of rancidity of lipids by titrimetric method
7	Ultrastructure of cell organelles (Electron micrographs) of: Nucleus Endoplasmic reticulum (Smooth and Rough) Mitochondria. Golgi apparatus
8.	 Lysosomes Study of clinical disorders due to carbohydrates, proteins and lipid
	imbalance (Photograph to be provided / symptoms to be given and disorder to be identified)

	SEMESTER IV
	Practical USZO P3 (Course - X)
1.	Study of life cycle of <i>Bombyx mori</i>
2.	Study of Honey Bee:
	a) Life Cycle of Honey Bee and Bee Hive
	b) Mouthparts of Honey Bee
	c) Legs of Honey Bee
3.	Estimation and comparison of protein content in Cow and Buffalo milk sample
4.	Estimation and comparison of fat content in Cow and Buffalo milk sample
5.	Study of commercially important fishery. (Catla, Rohu, Catfish, Mackerel, Pomfret, Bombay duck, Prawn/Shrimp, Crab, Lobster, Edible oyster)
6.	Visit to dairy farm /aquaculture/ fish landing center/fishery institute and submit report of the same
7.	Estimation of dissolved oxygen from the given water sample.
8.	Estimation of salinity by refractometer from the given water sample.
9.	Estimation of conductivity by conductometer from the given water sample.
10.	A project on aquarium setting in laboratory
11.	Visit to Sericulture, Apiculture and Aquaculture Center

Semester IV REFERENCES AND ADDITIONAL READING COURSE-VIII (USZ0401)

- **1.** Darwin, C. 1859. On the Origin of Species. London: John Murray (always seek out the first edition, facsimile version, and avoid later editions).
- **2.** Dobzhansky, T. 1937. Genetics and the Origin of Species. New York: Columbia Univ. Press (there are several later editions, and the title changed in the last).
- **3.** Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford: Oxford Univ. Press (there is a later edition).
- **4.** Hennig, W. 1966. Phylogenetic Systematics. Urbana: Univ. Illinois Press (an English translation of a book published earlier in German).
- **5.** Mayr, E. 1942. Systematics and the Origin of Species. New York: Columbia Univ. Press (there is a later edition, with a different title).
- **6.** Schmalhausen, I. I. 1949. Factors of Evolution. Philadelphia: Blakiston (publication of this book, written in the early 1940's, was delayed because of war, and then the translation from Russian to English was also delayed; it has been reprinted by Univ. Chicago Press).
- **7.** Bonner, J. T. 1988. The Evolution of Complexity. Princeton: Princeton Univ. Press.
- **8.** Hall, B. J. (ed.). 1994. Homology, the Hierarchical Basis of Comparative Biology. San Diego: Academic Press (a collection of essays by many authors).
- **9.** Keller, E. F. and E. A. Lloyd. 1992. Keywords in Evolutionary Biology. Cambridge, MA: Harvard Univ. Press.
- **10.** Mayr, E. 1982. The Growth of Biological Thought: Diversity, Evolution and Inheritance. Cambridge, MA: Harvard Univ. Press.
- 11. Rieppel, O. 1988. Fundamentals of Comparative Biology. Basel: Birkhäuser
- 12. Dawkins, R. 1982. The Extended Phenotype. New York: W. H. Freeman.
- **13.** Williams, G. C. 1992. Natural Selection: Domains, Levels and Challenges. New York: Oxford Univ. Press.
- **14.** Crow, J. F. 1991. Basic Concepts in Population, Quantitative, and Evolutionary Genetics. New York: W. H. Freeman.

- 15. Falconer, D. S. 1981. Introduction to Quantitative Genetics, second ed. London: Longman.
- **16.** Hartl, D. L. And A. G. Clark. 1989. Principles of Population Genetics, second, ed. Sunderland, MA: Sinauer.
- **17.** Real, L. A. (ed.). 1994. Ecological Genetics. Princeton: Princeton Univ. Press (a collection of essays by many authors).
- **18.** Research Methodology, Methods and Techniques- by C.R. Kothari, Wiley Eastern Ltd. Mumbai
- **19.** Practical research planning and design 2nd edition- Paul D Leedy, Macmilan Publication

Semester IV REFERENCES AND ADDITIONAL READING COURSE-IX (USZO402)

- **1.** Harpers Illustrated Biochemistry 30th Edition / Edition 30 by Victor Rodwell 2015, Publisher:McGraw-Hill Professional Publishing
- **2.** Biochemistry, 5th editionJeremy M Berg, John L Tymoczko, and Lubert Stryer 2002, publisher W. H. Freeman and Company.
- 3. Text Book of Biochemistry West, Todd, Mason, Bruggen Amerind Publishing Co. Pvt., Ltd
- **4.** Harper's Biochemistry Murray, Granner, Mayes, and Rodwell Prentice Hall International Inc.
- **5.** Text Book of Biochemistry West, Todd, Mason, Bruggen Amerind Publishing Co. Pvt., Ltd.
- **6.** Principles & Techniques of Practical Biochemistry Wilson, Walker- Cambridge Univ. Press.
- 7. Principles of Biochemistry White, Handler, Smith McGrew Hill Publ.
- **8.** Cell Biology, Genetics, Molecular Biology, Evolution & Ecology Verma, Agarwal S. Chand & Co.
- 9. Molecular & Cell Biology Bhamrah Anmol Publ. Pvt. Ltd., New Delhi.
- **10.**Molecular Biology of the Cell Alberts, Bray, Lewis, Raff, Roberts, Watson Garland Publishers. New York.

- **11.**Molecular Biology of the gene J. D. Watson, NH Hopkins, Roberts, Stertz, Weiner-Freeman.
- **12.**Concepts in Biotechnology Editors- Balasubramanian, Bryee, Dharmalingam, Green, Jayraman Sangam Books.
- **13.**Molecular Biology of the Gene Watson, Hopkins, Roberts, Steitz, Weiner Benjamin Cummings Publishing Co.
- **14.** Molecular Cell Biology Baltimore, Zipursky, Matsudaria, Darnel W. H. Freeman & Co., New York.
- **15.**Principles of Biochemistry White, Handler, Smith McGraw Hill Publ. 18) Cell & Molecular Biology Phillip Sheller Wiley Publ.
- **16.** Lehninger Principles of Biochemistry David L. Nelson, Michael M. Cox, Macmillan Worth Publishers.
- **17.** Harper's Biochemistry-Rober K. Murray, Daryl K. Grammer, McGraw Hill, LangeMedical Books. 25thedition.
- **18.** Fundamentals of Biochemistry-J.L. Jain, Sunjay Jain, Nitin Jain, S. Chand & Company.
- 19. Biochemistry-Dr. Amit Krishna De, S. Chand & Co., Ltd.
- **20.** Biochemistry-Dr. Ambika Shanmugam, Published by Author. 6) Biomolecules-C.Kannan , MJP Publishers, Chennai.

Semester IV REFERENCES AND ADDITIONAL READING

COURSE-X (USZO403)

- Mulberry pests current status and management practices: Sakthivel, Narendra Kumar Dhahira Beev. Devamani R.S. Teotia Published by Central Silk Board, Ministry of Textiles, Government of India Srirampura, Mysuru - 570 008. July - 2019
- 2. Sericulture technologies developed by csrti mysore Central Sericultural Research & Training Institute (ISO 9001: 2008 Certified) Central Silk Board Ministry of Textiles Govt. of India, CSRTI Mysore
- **3. Text Book of Tropical Sericulture**. Publ., Japan Overseas Corporation volunteers 1975.

- **4. Silkworm Rearing Techniques in the Tropics**, Dr. S. Omura, Japan International Cooperation Agency, 1980.
- **5. Muga Silk Industry** by S. N. Choudhary, Directorate of Sericulture and weaving, Govt. of Assam, 1982. The natures and property of soils (9th edition) N. C. Brady (Mac Millan pub. Co. Inc., New York.
- **6. Handbook of Practical Sericulture**: S.R. Ullal and M.N. Narasimhanna CSB, Bangalore 1987.
- **7. Handbook of Silkworm Rearing**: Agriculture and Technical Manual-1, Fuzi Pub. Co. Ltd., Tokyo, Japan1972.
- 8. Manual of Silkworm Egg Production: M. N. Narasimhanna, CSB, Bangalore 1988.
- **9. Economics of Sericulture under Irrigated Conditions**: M.S. Jolly, CSR & TI, Mysore, 1982.
- **10.Mulberry cultivation** (Vol. I) written by Zheng Ting-xing, Tan Yun-fang, Huang Guangxian and Ma ben. Published by: Oxford and IBH publishing Co. Pvt.Ltd., New Delhi, Bombay, Calcutta.
- **11.Silk egg productions** (Vol. III) written by Wang Sang-ming Published by: Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, Bombay, Calcutta.
- **12. Principles of Sericulture**: Hisao Aruga, Mohan Primlani for Oxford and IBH Publishing Co. Pvt. Ltd., 66, Janpath, New Delhi-110001.
- **13.Silkworm Rearing and Disease of Silkworm**, 1956, Ptd. By Director of Ptg., Stn. & Pub.Govt.Press Bangalore
- **14.Guide to Bees and Honey**: Ted Hooper, 2010. The World's Best-Selling Guide to Beekeeping. Northern Bee Books. Oxford. 8 David Cramp, 2012.
- **15.The Complete Step-by-step Book of Beekeeping**: A Practical Guide to Beekeeping, from Setting Up a Colony to Hive Management and Harvesting the Honey. Oxford. 8 David Cramp, 2012. Lorenz Books. London.
- **16. Apiculture**: Prost, P. J. (1962). e. Oxford and IBH, New Delhi.
- **17.Beekeeping** in India, Singh, S. (1971), Indian council of Agricultural Research, New Delhi
- 18. Living in the Environment-Concepts, Connections and Solutions. G. Tyler Miller and

- Scott E. Spoolman, Brooks/Cole, Cengage learning.
- **19.** An introduction to conservation biology. Richard B. Primack and Anna A. Sher, Sinauer Associates
- **20.** FishLore.Com Fresh water Aquarium Book- Free eBook
- **21.** In Association with practical fish keeping magazine www.practicalfishkeeping.co.uk
- 22. Handbook on Aquafarming-Ornamental Fishes. Published by MPEDA
- **23.**Diseases of ornamental fishes and their control- By A. P. Lipton (2006) eprints.cmfri.org.in

SCHEME OF EXAMINATION

- (d) One Theory examination of seventy-five (75) marks per course per semester should be conducted as per the following skeleton question paper pattern.
- (e) One practical examination of fifty (50) marks per course each should be conducted at the end of every semester.
- (f) Internal assessment and overall performance twenty-five (25) marks.

SKELETON PAPER PATTERN FOR THEORY EXAMINATION

NOTE: All Questions are compulsory.

Figures to the right indicate full marks.

Draw neat labelled diagrams wherever necessary.

Question number 1, 2 and 3 will be 20 Marks each and Question 4 for 15 Marks

Time: 2.5 hours Total marks: 75

- Q.1. Unit I may have questions carrying 12 and 8 marks OR of 10 marks each with 100% internal options
- Q.2. Unit II may have questions carrying 12 and 8 marks OR of 10 marks each with 100% internal options
- Q.3. Unit III may have questions carrying 12 and 8 marks OR of 10 marks each with 100% internal options
- Q.4. Unit I, II and III (Any3 out of 6) 15 marks

For Q.1, 2, 3 and 4 there shall be 100% internal option.

PRACTICAL USZOP1 (Course VIII) Skeleton -Practical Examination Question Paper Pattern

Time: 3 hrs Marks: 50

Major Question 12 Marks

Q1. Study Population density by Line transect or Quadrant method and calculate biodiversity indices (any 2)

Minor Question 08 Marks

Q2. Prepare a smear to show prokaryotic cell

OR

Q2. Prepare a smear to show eukaryotic cell.

Q3. Identify and describe as per instructions **08 Marks**

a. Fossils

b. Speciation

Q4. From the given article prepare the bibliography/ abstract **06 Marks**

Q5. Project presentation 06 Marks

Q6. Viva and Journal 10 Marks

PRACTICAL USZOP2 (Course IX)

Skeleton -Practical Examination Question Paper Pattern

Time: 3 hrs Marks: 50

Major Question

Q1. Study of permeability of cell through plasma membrane (Osmosis in blood cells)

Q2. Study of rancidity of lipids by titrimetric method.

Minor Question 08 marks

Q2. Qualitative tests for carbohydrates (Molisch's test, Benedicts test, Barfoed's test, Anthrone test)

OR

Q2. Qualitative tests for proteins (Ninhydrin test, Biuret test, Millon's test, Xanthoproteic test)

OR

Q2. Qualitative test for lipids (Solubility test, Sudan III test)

- Q2. Measurement of cell diameter by occulometer (by using permanent slide)
- Q3. Identify and describe as per instructions

15 marks

12 marks

- Ultra-structure of cell organelles (a, b, c)
- ii. Clinical disorders (d, e)
- Q4. Field Report and Viva based on it.

10 marks

Q5. Journal 05 marks

PRACTICAL USZOP3 (Course X)

Skeleton - Practical Examination Question Paper Pattern

Time: 3 hrs Marks: 50 **Major Question** 12 marks Q1. Estimation and comparison of protein content in Cow and Buffalo milk sample Q1. Estimation and comparison of fat content in Cow and Buffalo milk sample **Minor Question** 08 marks Q2. Estimation of Dissolved oxygen from the given water sample. Q. 2 Estimation of Salinity by refractometer from the given water sample Q.2 Estimation of conductivity by conductometer from the given water sample Q3. Describe any two type of commercially important fishery. 06 marks Catla, Rohu, Catfish, Mackerel, Pomfret 09 marks Q4. Identify and describe as per instructions: (Any 3) i. Life Cycle of Honey Bee and Bee Hive ii. Mouthparts of Honey Bee iii. Legs of Honey Bee iv. Sting Apparatus of Honey Bee v. Life cycle of silk worm Q5. Report based on field visit to Dairy farm /Aquaculture/ Sericulture/ Apiculture center. 10 marks

Q6. Journal and viva

05 marks