
⊥⊥ विद्या विनयेन शोभते ⊥⊥

Re-accredited 'A+' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Program: Masters in Science (M. Sc.)

SYLLABUS

M.Sc.-I Computer Science

Revised as per Choice Based Credit & Grading System (60:40) w.e.f. Academic Year 2023-24 as per NEP 2020

MASTERS IN SCIENCE (M. Sc.) Programme Outcomes

After completion of M.Sc. Programme students will acquire

SR. NO.	After completion of M.Sc. program students will acquire	Graduate Attribute		
PO1	An ability to identify and describe broadly accepted methodologies of science, and different modes of reasoning.	Disciplinary knowledge		
PO2	An ability to demonstrate proficiency in various instrumentation, modern tools, advanced techniques and ICT to meet industrial expectations and research outputs.	Disciplinary knowledge/Digital literacy		
PO3	An ability to identify problems, formulates, and proves Problem-solving hypotheses by applying theoretical knowledge and skills relevant to the discipline.			
PO4	An ability to articulate thoughts, research ideas, information, scientific outcomes in oral and in written presentation to a range of audience.	Communication skills		
PO5	A capacity for independent, conceptual and creative thinking, analysis and problem solving through the existing methods of enquiry.			
PO6	Skills required for cutting edge research, investigations, field study, documentation, networking, and ability to build logical arguments using scholarly evidence.			
PO7	An ability to portray good interpersonal skills with ability to work collaboratively as part of a team undertaking a range of different team roles	Teamwork		
PO8	The ability to understand ethical responsibilities and impact of scientific solutions in global, societal and environmental context and contribute to the sustainable development	Moral and ethical awareness/ multicultural competence		
PO9	An ability to demonstrate leadership, to take action and to get others involved.	Leadership		
PO10	An openness to and interest in, life-long learning through directed and self-directed study	Self-directed learning		
PO11	An ability to translate the knowledge and demonstrate the skills required to be employed and successful professional development.	Life-long learning		

Masters in Science (Computer) Syllabus for Semester I and II

Preamble:

In accordance with the principles outlined in the National Education Policy (NEP), the educators and stakeholders of higher education in Computer Science, envision a dynamic and research-oriented learning experience for students pursuing their Master of Science degree in Computer Science. This program is designed to cultivate advanced knowledge, critical thinking, and practical skills in various domains of computer science, including research-based subjects such as analysis of algorithms, robotics, machine learning, compiler design, research methodology, wireless sensor networks, and advanced database management systems (ADBMS). Recognizing the rapidly evolving nature of the field and the increasing demand for skilled professionals, our goal is to equip students with a comprehensive understanding of theoretical concepts and practical applications in these specialized areas. The M.Sc. Computer Science program emphasizes the development of advanced analytical and problem-solving abilities, fostering a spirit of innovation and research within the discipline.

The curriculum is designed to provide students with a deep understanding of cutting-edge technologies and methodologies in computer science. Courses such as analysis of algorithms delve into the theoretical foundations of efficient algorithm design and optimization, enabling students to analyze and solve complex computational problems. Robotics explores the intersection of computer science and engineering, emphasizing the design and implementation of intelligent systems capable of autonomous decision-making and interaction with the physical world.

Machine learning, a rapidly growing field, equips students with the tools and techniques to develop algorithms that enable computers to learn and make predictions or decisions without explicit programming. Compiler design focuses on the theory and practice of translating high-level programming languages into machine code, essential for efficient program execution. Research methodology prepares students to undertake independent research, equipping them with skills in literature review, experimental design, data analysis, and scientific writing.

Wireless sensor networks encompass the study of distributed systems composed of interconnected sensors capable of gathering and transmitting data wirelessly, opening avenues for applications in environmental monitoring, healthcare, and smart cities. Advanced database management systems delve into the intricacies of data organization, storage, retrieval, and query optimization in large-scale databases, crucial for efficient and secure data management. Through this research-focused curriculum, we aim to foster a culture of intellectual curiosity, innovation, and critical inquiry among our students. The program encourages students to actively engage in research projects, collaborate with faculty members, and contribute to the body of knowledge in computer science through their own research endeavors.

Furthermore, the M.Sc. Computer Science program recognizes the importance of ethical considerations in research and the responsible use of technology. Students are encouraged to conduct their research with integrity, adhere to ethical guidelines, and consider the social implications of their work. This ensures that our graduates not only possess technical expertise but also act as ethical leaders and responsible contributors to the field.

We are committed to providing an inclusive and diverse learning environment that fosters equal opportunities for all students, regardless of their background. The M.Sc. Computer Science program promotes diversity, equity, and inclusion, encouraging students from diverse communities to participate actively and contribute to the advancement of computer science.

With the implementation of the National Education Policy as our guiding framework, we envision that the M.Sc. Computer Science program will produce highly skilled professionals and researchers who can address the evolving challenges and opportunities in the field. Our graduates will be equipped with the necessary knowledge, research acumen, and ethical mindset to make significant contributions to academia, industry, and society as a whole.

By embarking on this educational journey, we aim to empower our students to become lifelong learners, innovators, and leaders in the field of computer science, contributing to the advancement of knowledge and addressing the complex technological needs of the contemporary world.

Additionally, we extend our gratitude to the members of the Board of Studies (BoS) for their valuable contributions in shaping the curriculum of the M.Sc. Computer Science program. Their expertise and insights have played a crucial role in ensuring that the syllabialign with the principles of the National Education Policy and meet the evolving needs of the industry and academia. We appreciate their dedication and commitment to maintaining academic excellence and fostering innovation in computer science education.

PROGRAMME SPECIFIC OUTCOME (PSO)

PSO	Description After completing Master's Degree in Computer Science learners will be able to:			
PSO 1	Understand the core and advanced subjects of Computer Science and its logical application to solve real-life case studies using Emerging technologies			
PSO 2	Identify, analyze, and solve research based interdisciplinary computational problems			
PSO 3	Get exposure to modern software tools and lifelong learning for professional development			

Scheme of Examination

Revised Scheme of Examination

The performance of the learners shall be evaluated into two components. The learner's Performance shall be assessed by Internal Assessment with 40% marks in the first component by conducting the Semester End Examinations with 60% marks in the second component. The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below:-

A) Internal Assessment: 40 %

40 Marks

Duration: 40 Minutes

Sr. No.	Particular	Marks
01	One periodical class test / online examination to be conducted in the given semester	20 Marks
02	Test on Practical Skills/ Case studies /Group/ Individual Survey Project/Presentation and write up on the selected topics of the subjects/ Test based on tutorials /Book Review / Open Book Test	15 Marks
03	Active participation in routine class instructional deliveries and overall conduct as a responsible learner, mannerism and articulation and exhibit of leadership qualities in organizing related academic activities	05 Marks

Question Paper Pattern

(Periodical Class Test)

Maximum Marks: 20

Questions to be set: 02

All Questions are Compulsory

Question No.	Particular		
Q-1	Match the Column / Fill in the Blanks / Multiple Choice Questions/ Answer in One or Two Lines (Concept based Questions) (1 Marks / 2 Marks each)	10 Marks	
Q-2	Answer in Brief (Attempt any Two of the Three) (5 Marks each)	10 Marks	

B) Semester End Examination: 60 %

60 Marks

- Duration: The examination shall be of $2\frac{1}{2}$ hours duration. ٠

Question Paper Pattern

Theory question paper pattern 1. There shall be five questions each of 12 marks. 2. All questions shall be compulsory with internal options. 3. Questions may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Passing Standard

The learners shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment and Semester End Examination. The learners shall obtain minimum of 40% marks (i.e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i.e. 24 Out of 60) separately, to pass the course and minimum of grade D in each project wherever applicable to pass a particular semester.

I. Practical Examination : - 150 (50 marks x 3 papers)

- Sr. No.Particulars of ExternalMarks1Laboratory Work402Journal053Viva05TOTAL50
- II. Each core subject carries: 50 Marks

Minimum 75 % practical from each core subject are required to be completed and written in the journal.

(Certified Journal is compulsory for appearing at the time of Practical Exam) ------

Semester – I

[Under CBCS Scheme]

Course	Course code	Hrs./ week	Internal assessment	Semester- end examinati on on	Total	Credits
	Discipline S	pecific	Course Man	datory		
Analysis of algorithm and Research Computing	PCS1ARC	4	40	60	100	4
Robotics	PCS1ROB	4	40	60	100	4
Wireless Sensor Network	PCS1WSN	4	40	60	100	4
Practical of AARC+Robotics	PCS1PPR1	4	-	50 100		2
		Mi	nor	1		
Research Methodology	PCS1REM	4	40	60	100	4
	_	_	ecific Elective			
	(Anyo	ne from	the DSE Lis	t)		
Advance Database Management System	PCS1ADM	2	40	60	100	4
Machine Intelligence	PCS1MIN	2	40	60	100	4
Practical of WSN+ Elective	PCS1PPR2	4	-	50	100	2
Total Credits	22		1	1	1	1

Semester – II

[Under CBCS Scheme]

Course	Course code	Hrs. / wee k	Internal assessment	Semester- end examination	Total	Credits
	Discipline	Specif	ic Course Ma	andatory		
Cloud Computing	PCS2CLC	4	40	60	100	4
Natural Language Processing	PCS2NLP	4	40	60	100	4
Cryptography and Cryptanalysis	PCS2CRC	4	40	60	100	4
Practical of CC+NLP	PCS2PPR1	4	40	60	100	2
		OJT/F	P/CEP/RP		1	
On Job Training		_				4
	Discij	pline S	pecific Electi	ives		1
	(Anyo	one fro	om the DSE I	List)		
Business Intelligence and Big Data Analytics	PCS2BID	2	40	60	100	4
Machine Learning	PCS2MAL	2	40	60	100	4
Practical of CAC+ Elective	PCS2PPR2	4				2
Total Credits	22		·		·	

Course Description				
Semester	Ι			
Course Name	Analysis of Algorithm and Research Computing			
Course Code	PCS1ARC			
Eligibility for Course	B.Sc.			
Credit	4			
Hours	60			

- To recognize designing and backtracking techniques of an algorithm
- To cognize analysis techniques, number theoretic and Np completeness aspects of an algorithm
- To analyze various research problems and ways to solve specific problems
- To develop an approach towards research and implementation in the form of a research paper

Course Outcomes:

- Describe advanced strategies of an algorithm
- Discuss the analysis techniques, number theoretic and NP completeness perspectives of an algorithm
- Discover a research problem and find a way to solve a specific research problem
- Create a research paper with professional skills

Syllabus					
Unit I	Design strategies1The Role of Algorithms in Computing:Algorithms as atechnology.				
	Getting Started: Insertion sort, Analyzing algorithms, Designing algorithms. Growth of Functions: Standard notations and common functions.				
	Divide-and-Conquer: The maximum-subarray problem,				

	Strassen's algorithm for matrix multiplication, The substitution method for solving recurrences. Probabilistic Analysis and Randomized Algorithms: The hiring problem, Indicator random variables, and Randomized algorithms.				
Unit II	Advanced Design and Analysis Techniques				
	Dynamic Programming: Rod cutting, Elements of dynamic programming, longest common subsequence.				
	Greedy Algorithms: An activity-selection problem, Elements of the greedy strategy, Huffman codes. Elementary Graph Algorithms: Representations of graphs, Minimum Spanning				
	Trees: Growing a minimum spanning tree, Algorithms of Kruskal and Prim. Single-Source Shortest				
	Paths: The Bellman-Ford algorithm, Single-source shortest paths in directed acyclic graphs, Dijkstra's algorithm.				
Unit III	Number-Theoretic Algorithms and NP – Completeness	15L			
	Elementary number-theoretic notions, Greatest common divisor, Modular arithmetic, Solving modular linear equations, The Chinese remainder theorem, Powers of an element, NP- Completeness				
UNIT IV Optimization Techniques: Maximum bipartite matching, Push					
	relabel algorithms, The relabel-to-front algorithm The Flyod -				
	Warshall Algorithm, The online paging problem, Adversary				
	models, Paging against an oblivious adversary, Relating the				
	adversaries, The adaptive online adversary, The kServer Problem				
	String Matching : The naïve string matching algorithm, Rabin				
	Karp algorithm, Longest common subsequence (LCS), String				
	matching with finite automata				
Text book:					
	uction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. son, Ronald L. Rivest, Clifford Stein, PHI Learning Pvt. Ltd-New Do	elhi			
 Researching Information Systems and Computing, Brinoy J Oates, Sage Publications India Pvt. Ltd (2006) References: Algorithms, Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh Vazirani, McGraw- Hill Higher Education (2006). 					
 Grokkin 	ng Algorithms: An illustrated guide for programmers and other curiou MEAP, Aditya Bhargava, http://www.manning.com/bhargava	18			

- Research Methodology, Methods and Techniques, Kothari, C.R., 1985, third edition, New Age International (2014)
- Basic of Qualitative Research (3rd Edition), Juliet Corbin & Anselm Strauss, Sage Publications (2008).
- Research Methodology, third edition by C. R. Kothari, Gaurav Garg

Sr. No	List of Practical Experiments
1	Write a program to implement the Rod Cutting problem.
2	Write a program to implement a merge sort algorithm. Compare the time and memory complexity.
3	Given an array of numbers of length l. Write a program to generate a random permutation of the array using (i) permute-by-sorting () and (ii) permute-by-cyclic ().
4	Write a program to implement the Longest Common Subsequence (LCS) algorithm.
5	Write a program to implement Kruskal's algorithm.
6	Write a program to implement Dijkstra's algorithm.
7	Write a program to implement Euclid's algorithm to implement gcd of two non- negative integers a and b. Extend the algorithm to find x and y such that $gcd(a,b) = ax+by$. Compare the running time and recursive calls made in each case.
8	Write a program to verify (i) Euclid's theorem (ii) Fermat's theorem.
9	Write a program to implement a greedy set cover algorithm to solve the set covering problem.
10	Implement the following algorithm using an array as a data structure and analyze its time complexity. a. Bubble sort b. Radix sort c. Selection sort d. Heap sort e. Bucket sort f. Insertion sort
11	Implement N Queen's problem using Backtracking.
12	Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.
13	Implement Strassen's matrix multiplication Algorithm.
14	Write a program to find a solution for the knapsack problem using greedy methods.
15	Implement 0/1 Knapsack problem using Dynamic Programming.

Module/ Unit	Course Description	Hrs.	CO No.	PSO No.	PO No.
1	Designing strategies of an algorithm	15h	1	1	2
2	Analysis techniques of an algorithm	15h	2	1	2
3	Discover a research problem	15h	3	2	3

Course Description			
Semester	Ι		
Course Name	Robotics		
Course Code	PCS1ROB		
Eligibility for Course	B.Sc.		
Credit	4		
Hours	60		

- To understand the working principles of physical components of robotic system
- To learn the internal and external perceptions of the robot based on different types of sensors
- To impart the knowledge about planning, mapping, and navigation of robot
- To provide hands-on practice to build actual robot

Course Outcomes:

- 1. Describe the concepts of robotics and its components
- 2. Analyze the internal and external perceptions of the robot based on different types of sensors
- 3. Evaluate the planning, mapping, and navigation of robots
- 4. Construct a robot using Raspberry Pi

	Syllabus	Total
		45L
Unit I	Introduction to Robotics:	15 L
	What is a Robot? Definition, History of Robots: Control Theory, Cybernetics,	
	Grey Walter Tortoise, Analog Electronic Circuit, Reactive Theory,	
	Braitenberg's Vehicle, Artificial Intelligence, Vision Based Navigation,	
	Types of Robot Control. Robot Components: Embodiment, Sensors, States,	
	Action, Brains and Brawn, Autonomy, Arms, Legs, Wheels, Tracks, and	
	What really drives them effectors and actuators: Effector, Actuator, Passive	
	and Active Actuation, Types of Actuator, Motors, Degree of freedom	
	Locomotion: Stability, Moving and Gaits, Wheels and Steering, Staying on	
	the path. Manipulators: End effectors, Teleoperation, Why is manipulation	
	hard? Sensors: Types of Sensors, Levels of Processing, Passive and Active	
	sensors, Switches, Light sensors, Resistive position sensor.	
Unit II	Sonar, Lasers and Cameras:	15 L
	Ultrasonic and Sonar sensing, Specular Reflection, Laser Sensing, Visual	
	Sensing, Cameras, Edge Detection, Motion Vision, Stereo Vision, Biological	
	Vision, Vision for Robots, Feedback or Closed Loop Control: Example of	
	Feedback Control Robot, Types of feedback control, Feed forward or Open	
	loop control.	
Unit III	Languages for Programming Robot:	15 L
	Algorithm, Architecture, The many ways to make a map, What is planning,	
	Cost of planning, Reactive systems, Action selection, Subsumption	
	architecture, How to sequence behavior through world, hybrid control,	
	Behavior based control and Behavior Coordination, Behavior Arbitration,	
	Distributed mapping, Navigation and Path planning.	
Unit IV	Building Robots With Raspberry Pi and Python:	15 L
	Hardware components of Raspberry pi, installation of Raspberry pi, Building	
	Robot- ,Required Components, Assembling robot, Robot Movement-H-	
	bridge, Programme Robot with predefined route, Line following using	
	TCRT5000 sensor, Avoiding Obstacles-Ultrasonic sensors for analog object	
	detection,HC-SR04 working and mounting, Measuring short distance	

Text Books:

- The Robotics Primer by Maja J Matarić, MIT press Cambridge, Massachusetts, London, England (2007).
- Learn Robotics With Raspberry Pi, Matt Timmons –Brown

Sr. No.	List of Practical Experiments				
	Perform following practical's using Robosim and JGameGrid				
1	Write a program to create a robot with gear and move it forward, left, right.				
2	Write a program to create a robot without gear and move it forward, left, right.				
3	Write a program to create a robot with two motors and move it forward, left, right.				
4	Write a program to do a square using a while loop.				
5	Write a program to do steps with a for loop.				
6	Write a program to change directions based on condition, controlling motor speed using switch case.				
7	Write a program to create a robot with light sensors to follow a line.				
8	Write a program to create a robot that does a circle using 2 motors.				
9	Write a program to create a path following the robot.				
10	Write a program to register obstacles.				
	Perform following practical's using Raspberry Pi				
11	Installation and hardware preparation of Raspberry Pi.				
12	Build and assemble a robot using Raspberry Pi.				
13	Add the sensor to the robot objects and develop line following behavior code.				
14	Implement Line following using TCRT5000 sensor.				
15	Implement Object detection using HC-SR04 sensor.				

Module/ Unit	Course Description	Hrs.	CO No.	PSO No.	PO No.
1	Introduction to Robotics	15h	1	1	1
2	Sonar, Lasers and Cameras	15h	2	3	2
3	Languages for Programming Robot	15h	3	3	2
4	Building Robots With Raspberry Pi and Python	15h	3	3	2

Course Description		
Semester	Ι	
Course Name	Wireless Sensor Network	
Course Code	PCS1WSN	
Eligibility for Course	B.Sc.	
Credit	4	
Hours	60	

- To understand connection between different wireless devices and their compatibility
- To learn sensor node hardware & network architecture
- To conceptualize the framework of wireless network

Course Outcomes:

- 1. Understand various applications of wireless sensor networks
- 2. Describe the concepts, protocols, design and implementation of wireless sensor networks.
- 3. Evaluate new ideas for solving wireless sensor network design issues

	Syllabus	Total
		60 L
Unit I	Introduction: Introduction to Sensor Networks, unique constraints and	15 L
	challenges. Advantage of Sensor Networks, Applications of Sensor	
	Networks, Mobile Adhoc NETworks (MANETs) and Wireless Sensor	
	Networks, Enabling technologies for Wireless Sensor Networks.	
	Sensor Node Hardware and Network Architecture: Single-node	
	architecture, Hardware components & design constraints, Operating systems	
	and execution environments, introduction to TinyOS and nesC. Network	
	architecture, Optimization goals and figures of merit, Design principles for	
	WSNs, Service interfaces of WSNs, Gateway concepts.	
Unit II	Medium Access Control Protocols: Fundamentals of MAC Protocols,	15 L
	MAC Protocols for WSNs, Sensor-MAC Case Study.	
	Routing Protocols: Data Dissemination and Gathering, Routing Challenges	
	and Design Issues in Wireless Sensor Networks, Routing Strategies in	
	Wireless Sensor Networks.	
	Transport Control Protocols: Traditional Transport Control Protocols, 15L	
	Transport Protocol Design Issues, Examples of Existing Transport Control	
	Protocols, Performance of Transport Control Protocols.	
Unit-III	Introduction to Wireless Transmission: Applications, A short history of	15 L
	wireless communication.	
	Wireless Transmission: Frequency for radio transmission, Signals, Antennas,	
	Signal propagation, Multiplexing, Modulation, Spread spectrum, Cellular	
	systems.	
	Wireless Transmission Technology and Systems: Radio Technology Primer,	
	Available Wireless Technologies- Campus Applications, MAN/WAN	
	Applications.	
Unit-IV	Applications of Wireless Sensor Networks : Introduction, Background,	15 L
	Examples of Category 2 WSN Applications: Home Control,	
	Building Automation, Industrial Automation, Medical Applications. Examples	
	of Category 1 WSN Applications: Sensor and Robots, Reconfigurable Sensor	
	Networks, Highway Monitoring, Military Applications, Civil and	
	Environmental Engineering Applications, Wildfire Instrumentation, Habitat	

Monito	Monitoring, Nanoscopic Sensor Applications.	
Netwo	rk Management for Wireless Sensor Networks: Introduction,	
Netwo	k Management Requirements, Traditional Network Management	
Model	, Network Management Design Issues, Example of Management	
Archit	cture: MANNA, Other Issues Related to Network Management.	

Sr. No.	List of Practical Experiments			
Perform	Perform following practical's using INET Framework for OMNeT++, NetSim , TOSSIM, Cisco packet tracer 6.0 and higher version.			
1	Understanding the Sensor Node Hardware. (For Eg. Sensors, Nodes(Sensor mote), Base Station, Graphical User Interface.)			
2	Exploring and understanding TinyOS computational concepts:- Events, Commands and Task nesC model - nesC Components			
3	Understanding TOSSIM for - Mote-mote radio communication - Mote-PC serial communication			
4	Create and simulate a simple adhoc network			
5	Understanding, Reading and Analyzing Routing Table of a network.			
6	Create a basic MANET implementation simulation for Packet animation and Packet Trace.			
7	Implement a Wireless sensor network simulation			
8	Create MAC protocol simulation implementation for wireless sensor Network.			
9	Simulate Mobile Adhoc Network with Directional Antenna			
10	Create a mobile network using Cell Tower, Central Office Server, Web browser and Web Server. Simulate connection between them			
11	Implementation /Simulation of any two Routing Protocols in Adhoc Networks.			
12	Implementation /Simulation of any two Routing Protocols in Wireless Sensor			
	Networks			
13	Implementation /Simulation of any two MAC Protocols in Wireless Sensor Networks.			
14	Network IP and basic network command and network configuration Commands, Simulation of Four Node Point to Point Network.			
15	To implement and compare various MAC layer protocols.			

Module/ Unit	Course Description	Hrs.	CO No.	PSO No.	PO No.
1	Introduction to Sensor Networks	15h	1	1	1
2	Medium Access Control Protocols	15h	2	1	2
3	Introduction to Wireless Transmission	15h	3	1	2
4	Network Management for Wireless Sensor Networks	15h	4	1	2

Course Description		
Semester	Ι	
Course Name	Research Methodology	
Course Code	PCS1RME	
Eligibility for Course	B.Sc.	
Credit	4	
Hours	60	

- To impart knowlede and skills requrired for research metodology.
- To gain the knowledge of research paper writing without violating professional ethics.

Course Outcomes:

- 1. Formulate research problem and carry out research analysis
- 2. Follow research ethics.
- 3. Understand about IPR and filing patents in R & D.

	Syllabus	Total 60 L
	Research Methodology	
Unit I	Objectives and motivation of research, Types of research, Research approaches, Significance of research, Research methods verses methodology, Research and scientific method, Importance of research methodology, Research process, Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, necessary instrumentations, Criteria of good research.	15 L
	Defining the research problem : Definition of research problem, Problem Formulation, Necessity of defining the problem, Technique involved in defining a problem.	
Unit II	Literature survey and data collection: Importance of literature survey - Sources of information, Assessment of quality of journals and articles, Information through internet. Effective literature studies approaches, analysis, plagiarism, and research ethics, Data - Preparing, Exploring, examining and displaying.	15 L
Unit-III	Research design and analysis Meaning of research design, Need of research design , Different research designs , Basic principles of experimental design,Developing a research plan, Design of experimental set-up , Use of standards and codes, Overview of Multivariate analysis, Hypotheses testing and Measures of Association, Presenting Insights and findings using written reports and oral presentation.	15 L
Unit-IV	Intellectual property rights (ipr) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. Role of WIPO and WTO in IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions.	15 L

Text book:

- 1. Peter S. Menell ,Mark A. Lemley, Robert P. Merges, "Intellectual Property in the New Technological "Vol. I Perspectives, 2021.
- 2. Laura R. Ford,"The Intellectual Property of Nations: Sociological and Historical Perspectives on a Modem Legal Institution Paperback -2021.
- 3. 1. R. Ganesan, "Research Methodology for Engineers", MJP Publishers, Chennai, 2011.
- 4. RatanKhananabis and SuvasisSaha, "Research Methodology", Universities Press, Hyderabad, 2015.
- 5. Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata McGraw Hill Education, I1e (2012).
- 6. Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007.
- 7. David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007.
- 8. The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional Programme Intellectual Property Rights, Law and practice", September 2013.
- 9. Ranjit Kumar, 2nd Edition,"Research Methodology: A Step by Step Guide for beginners"2010

Module/ Unit	Course Description	Hrs.	СО	PSO	РО
			No.	No.	No.
1	Research Methodology	15h	1	1	2
2	Literature survey and data collection:	15h	2	2	3
3	Research design and analysis	15h	2	2	3
4	Intellectual property rights (ipr)	15h	2	2	3

Course Description			
Semester	Ι		
Course Name	Advanced Database Systems		
Course Code	PCS1ADS		
Eligibility for the Course	B.Sc.		
Credit	2		
Hours	30		

- To understand distributed database systems.
- To explore the concepts of object-oriented, temporal, spatial databases and deductive database.

Course Outcomes:

- 1. Describe the concept of distributed database systems.
- 2. Illustrate data modeling and database development processes for object-oriented, temporal, spatial databases and deductive database.

	Syllabus	Total 30 L
Unit I	 Distributed Database Concepts Definition of Distributed databases and Distributed Database Management System (DDBMS), Distributed transparent system. DDBMS Architecture: DBMS standardization, Global, Local, External, and Internal Schemas, Architectural models for DDBMS. Distributed database design: Design problem of distributed systems, Design, strategies (top-down, bottom-up), Fragmentation, Allocation and replication of fragments. Query Processing Overview, Query Optimization. Concepts of Transaction Management and Concurrence Control: Transaction Management: Definition and examples, formalization of a transaction, ACID properties, classification of transaction. Concurrency Control: definition, execution schedules, examples, locking based 	30 L 15 L
	algorithms, timestamp ordering algorithms, deadlock management.	

Sr.	List of Practical
No	Experiments

Unit II	Object Oriented, Temporal and Spatial Databases:	15L			
	Object Oriented Database: Object Identity, Object structure, Type	131			
	Constructors, Encapsulation of Operations, Methods, Persistence, Type				
	and Class Hierarchies, Inheritance, Complex Objects, Object-oriented				
	DBMS, Languages and Design: ODMG Model, Object Definition				
	Languages (ODL), Object Query Languages (OQL). Temporal and				
	Spatial Database: Introduction to Temporal Database: Time ontology,				
	structure, and granularity, Temporal data models, Temporal relational				
	algebras. Introduction to Spatial Database: Definition, Types of spatial				
	data, Geographical Information Systems (GIS), Conceptual Data Models				
	for spatial databases, Logical data models for spatial databases: raster				
	and vector model. Physical data models for spatial databases: Clustering				
	methods (space filling curves), Storage methods (R-tree). Query				
	processing.				
	Deductive Database: Introduction to recursive queries, Datalog				
	Notation, Clause Form and Horn Clauses, Interpretation of model: Least				
	Model semantics, The fixed point operator, safe Datalog program,				
	recursive query with negation.				
Text books:					
	buted Database; Principles & Systems By Publications, Stefano Ceri and C atti,, McGraw-Hill International Editions (1984)	liuseppo			
	• Database Management Systems, 3rd edition, Raghu Ramakrishnan and Johannes Gehrke, McGraw-Hill (2002).				
• Funda	amentals of Database Systems, 6thEdition, Elmasri and				
• Navat	the, Addison. Wesley (2003).				
•	• Unifying temporal data models via a conceptual model, C.S. Jensen, M.D. Soo, and R.T. Snodgrass: Information Systems, vol. 19, no. 7, pp. 513-547, 1994.				
-	• Spatial Databases: A Tour by Shashi Shekhar and Sanjay Chawla, Prentice Hall, 2003 (ISBN 013-017480-7)				
• Princi References:	• Principles of Multimedia Database Systems, Subramanian V. S. Elsevier Publishers, 2013 References:				
Valdu	 Principles of Distributed Database Systems; 2nd Edited By M. Tamer Ozsu and Patrick Valduriez, Pearson Education Asia. · Database System Concepts, 5th edition, Avi Silberschatz 				
• , Hen	ry F. Korth , S. Sudarshan: McGraw-Hill (2010)				

	atabase Systems: Concepts, Design and Applications, 2nd edition, Shio Kumar Singh, earson Publishing, (2011).
	ulti-dimensional aggregation for temporal data. M. Böhlen, J. Gamper, and C.S. Jensen. Proc. of EDBT-2006, pp. 257-275, (2006).
	oving objects databases (chapter 1 and 2), R.H. Güting and M. Schneider: Morgan aufmann Publishers, Inc., (2005)
	dvanced Database Systems, (chapter 5, 6, and 7), Zaniolo et al.: Morgan Kaufmann ablishers, Inc., (1997)
1	Create table sales_order (to store client's orders) and sales_order_details (used to store client's orders with details of each product ordered) Retrieve the structure of the tables. Retrieve all the attributes of all the tables.
2	For a given global conceptual schema, divide the schema into vertical fragments and Place the replication of the global conceptual schema on different nodes and execute queries that will demonstrate a distributed database environment.
3	For a given global conceptual schema, divide the schema into horizontal fragments and place them on different nodes. Execute queries on these fragments that will demonstrate a distributed database environment.
4	Place the replication of global conceptual schema on different nodes and execute queries that will demonstrate a distributed database environment
5	Create different types that include attributes and methods. Define tables for these types by adding a sufficient number of tuples. Demonstrate insert, update and delete operations on these tables. Execute queries on them
6	Create a temporal database and issue queries on it.
7	Create a table that stores spatial data and issue queries on it.

Module/ Unit	Course Description	Hrs.	CO No.	PSO No.	PO No.
1	Distributed Database Concepts	15h	1	1	1
2	Object Oriented, Temporal and Spatial Databases, Deductive Database	15h	2	3	1,3

Course Description	
Semester	Ι

Course Name	Machine Intelligence
Course Code	PCS2MIN
Eligibility for Course	B.Sc.
Credit	4
Hours	60

- To be able to formulate machine learning problems corresponding to different applications.
- To understand various machine learning algorithms along with their advantages and disadvantages.
- To be able to apply machine learning algorithms to solve problems of moderate complexity.

Course Outcomes:

- 1. Understand the basic concepts and types of learning from data.
- 2. Analyze the models using different Machine Learning techniques.
- 3. Create probabilistic and unsupervised learning models for handling unknown patterns.

Syllabus		Total 60 L
	Learning-Standard Linear methods:	15 L
	Statistical Learning: What Is Statistical Learning, Assessing Model	
Unit I	Accuracy, Linear Regression: Simple Linear Regression, Multiple	
	Linear Regressions, and Other Considerations in the Regression Model,	
	The Marketing Plan, and Comparison of Linear Regression with K-	
	Nearest Neighbors, Classification: An Overview of Classification, Why	
	Not Linear Regression? , Logistic Regression, Linear Discriminant	
	Analysis, A Comparison of Classification Methods.	

 ampling Methods: Cross-Validation, The Bootstrap. Linear Model ction and Regularization: Subset Selection, Shrinkage Methods, ension Reduction Methods, Considerations in High Dimensions. -Linear Learning methods: momial Regression, Step Functions, Basis Functions, Regression nes, Smoothing Splines, Local Regression, Generalized Additive lels. e-Based Methods: The Basics of Decision Trees. Bagging, Random ests, Boosting. 	15 L
ension Reduction Methods, Considerations in High Dimensions. -Linear Learning methods: momial Regression, Step Functions, Basis Functions, Regression nes, Smoothing Splines, Local Regression, Generalized Additive lels. e-Based Methods: The Basics of Decision Trees. Bagging, Random ests, Boosting.	15 L
-Linear Learning methods: momial Regression, Step Functions, Basis Functions, Regression nes, Smoothing Splines, Local Regression, Generalized Additive lels. e-Based Methods: The Basics of Decision Trees. Bagging, Random ests, Boosting.	15 L
momial Regression, Step Functions, Basis Functions, Regression nes, Smoothing Splines, Local Regression, Generalized Additive lels. e-Based Methods: The Basics of Decision Trees. Bagging, Random ests, Boosting.	15 L
nes, Smoothing Splines, Local Regression, Generalized Additive lels. e-Based Methods: The Basics of Decision Trees. Bagging, Random ests, Boosting.	
lels. e-Based Methods: The Basics of Decision Trees. Bagging, Random ests, Boosting.	
e-Based Methods: The Basics of Decision Trees. Bagging, Random ests, Boosting.	
ests, Boosting.	
nort Vector machines Principal Component Analysis and	
nort Vector machines Principal Component Analysis and	
port vector machines, rincipal component Analysis and	15 L
stering:	
oport Vector Machines: Maximal Margin Classifier. Support Vector	
ssifiers: Support Vector Machines, SVMs with More than Two	
sses Relationship to Logistic Regression. Unsupervised Learning:	
e Challenge of Unsupervised Learning, Principal Components	
alysis, Clustering, Methods: K-Means Clustering, Hierarchical	
stering, Practical Issues in Clustering.	
	oport Vector Machines: Maximal Margin Classifier. Support Vector Assifiers: Support Vector Machines, SVMs with More than Two Asses Relationship to Logistic Regression. Unsupervised Learning: e Challenge of Unsupervised Learning, Principal Components alysis, Clustering, Methods: K-Means Clustering, Hierarchical Astering, Practical Issues in Clustering.

References:

- Introduction to Machine Learning (Second Edition): Ethem Alpaydın, The MIT Press (2010).
- Pattern Recognition and Machine Learning: Christopher M. Bishop, Springer (2006)
- Bayesian Reasoning and Machine Learning: David Barber, Cambridge University Press (2012)
- Machine Learning: The Art and Science of Algorithms that Make Sense of Data: Peter Flach, Cambridge University Press (2012) Machine Learning for Hackers: Drew Conway and John Myles White, O'Reilly (2012)
- Machine Learning in Action: Peter Harrington, Manning Publications (2012).
- Machine Learning with R: Brett Lantz, Packt Publishing (2013)

Sr. No.	List of Practical Experiments
1	Implement a simple linear regression model on a standard data set and plot the least square regression fit. Comment on the result. [One may use inbuilt data sets like Boston, Auto etc]
2	Implement multiple regression model on a standard data set and plot the least square regression fit. Comment on the result. [One may use inbuilt data sets like Carseats, Boston etc].
3	Fit a classification model using logistic regression on a standard data set and compare the results. [Inbuilt datasets like Smarket, Weekly, Auto, Boston etc may be used for the purpose].
4	 Fit a classification model using following: (i) Linear Discriminant Analysis (LDA) (ii) Quadratic Discriminant Analysis (QDA) [Inbuilt datasets like Smarket, Weekly, Auto, Boston etc may be used for the purpose].
5	Fit a classification model using K Nearest Neighbour (KNN) Algorithm on a given data set. [One may use data sets like Caravan, Smarket, Weekly, Auto and Boston].
6	Use bootstrap to give an estimate of a given statistic. [Datasets like Auto, Portfolio and Boston etc may be used for the purpose].
7	For a given data set, split the data into two training and testing and fit the Linear model using least squares training set.

8	For a given data set, split the data into two training and testing and fit the following on training set:(i) Ridge regression model(ii) Lasso model
	Report test errors obtained in each case and compare the results. [Data sets like College, Boston etc may be used for the purpose].
9	 For a given data set, split the data into two training and testing and fit the following on the training set: (i) PCR model (ii) PLS model Report test errors obtained in each case and compare the results. [Data sets like College, Boston etc may be used for the purpose].
10	For a given data set, Perform the polynomial regression and make a plot of the resulting polynomial fit to the data. Make a plot of the fit to the data. [Use a data set like Wage for the purpose].
11	For a given data set, Fit a step function and perform cross validation to choose the optimal number of cuts. Make a plot of the fit to the data. [Use a data set like Wage for the purpose].
12	 For a given data set, do the following: (i) Fit a classification tree (ii) Fit a regression tree [One may choose data sets like Carseats, Boston etc for the purpose].
13	For a given data set, split the dataset into training and testing. Fit the following models on the training set and evaluate the performance on the test set: (i) Boosting (ii) Bagging (iii) Random Forest [Data sets like Boston may be used for this purpose].
14	Fit a support vector classifier for a given data set. [Data sets like Car, Khan, Boston etc may be used for the purpose].
15	Perform the following on a given data set: (i) Principal Component Analysis (ii) Hierarchical clustering. [Data set like NC160, USArrests etc may be used for the purpose].

Note: The above practical experiments require the R Software

Module /Unit	Course Description	Hrs.	CO No.	PSO No.	PO No.
1	Learning-Standard Linear methods:	15h	1	1	1
2	Selection and improvements of linear learning methods & Non-Linear Learning methods	15h	2	2	2
3	Tree-Based Methods & Support Vector machines, Principal Component Analysis and Clustering:	15h	3	2	2

Semester II

Course Description				
Semester	II			
Course Name	Cloud Computing			
Course Code	PCS2CLC			
Eligibility for Course	B.Sc.			
Credit	4			
Hours	60			

Course Objectives:

- To provide comprehensive and in-depth knowledge of Cloud Computing concepts, technologies, and architecture
- To analyze different cloud computing platforms for implementing solutions
- To expose the students to frontier areas of Cloud Computing Management services
- To make students aware of security threats in cloud computing

Course Outcomes:

- Articulate the main concepts, key technologies, strengths, and limitations of cloud computing and the possible applications for state-of-the-art cloud computing
- 2. Identify problems, and explain, analyze, and evaluate various cloud computing platforms for the solution
- 3. Implement different types of Service Oriented Architecture systems
- 4. Analyze the issues in Resource provisioning and Security governance in clouds

	Syllabus	Total 60 L
Unit I	Introduction: Introduction, Roots of Cloud Computing: From mainframe to Cloud, Benefits of Cloud Computing SOA, Web services, Web 2.0, Mashups, Grid computing, Utility computing, Hardware virtualization, Essentials of Cloud characteristics, Challenges, Cloud economics, Role of Networks in Cloud Computing: Cloud types and service models.	15L
	Security in Cloud Computing: Introduction, Global Risk and Compliance aspects in cloud environments and key security terminologies	
Unit II	 Cloud Platforms: Features of Cloud and Grid Platforms: Cloud Capabilities and Platform Features, Traditional Features Common To Grids and Clouds, Data Features and Databases, Programming and Runtime Support. Parallel and Distributed Programming Paradigms: Parallel Computing and Programming Paradigms, MapReduce, Twister and Iterative MapReduce, Hadoop Library from Apache. Examples: Openstack, Opennimbus, Eucalyptus Primary Cloud Service models, GAE, AWS, and Azure: Public Clouds and Service Offerings, Google App Engine (GAE), Amazon Web Service (AWS), Microsoft Windows Azure 	15L

Unit III	Unit III Management of cloud services				
	Reliability, availability, and security of services deployed from the				
	cloud. Performance and scalability of services, tools, and				
	technologies used to manage cloud services deployment; Cloud				
	Economics: Cloud Computing infrastructures available for				
	implementing cloud-based services. Economics of choosing a				
	Cloud platform for an organization, based on application				
	requirements, economic constraints and business needs (e.g				
	Amazon,				
	Microsoft and Google, Salesforce.com, Ubuntu and Redhat)				
Unit IV	Security in Cloud Computing Introduction, Global Risk and Compliance aspects in cloud environments and key security terminologies, Technologies for Data security, Data security risk, Cloud computing and identity, Digital identity and access management, Content level security, Security-As- A-Cloud Service				
Text b	ook:				
• Rajku	Rajkumar Buyya, "Cloud computing principles and paradigms", Wiley				
• Gauta	Gautam Shroff, Enterprise Cloud Computing, Cambridge				
 Rajku 	Rajkumar Buyya, "Mastering Cloud computing", McGraw Hill				
	• Tim Mather, Subra K, Shahid L., Cloud Security and Privacy, Oreilly, ISBN-13 978-				
	81-8404-815-5				
	 Distributed and cloud computing from parallel processing to the internet of things by Kai Hwang, Geoffry C. Fox, and Jack J. Dongarra 				
	<i>C,,,,</i>				
 References: Kai Hwang, Jack Dongarra, Geoffrey Fox: Distributed and Cloud Computing, From Parallel Processing to the Internet of Things, MK Publishers, 2012. 2. Michael Miller, Cloud Computing: Web-Based Applications that change the Way you work and collaborate Online, Pearson Publication, 2012. Dr. Kumar Saurabh, "Cloud Computing", Wiley Publication 					

Sr. No.	List of Practical Experiments
1	Develop Applications using Google AppEngine
2	Implement MapReduce and Hadoop
3	Implement private cloud with Xen server
4	Creating a Failover Cluster using Failover Cluster Manager
5	Implement private cloud with Exi server
6	Installation and Configuration of virtualization using KVM
7	Study and implement Cloud Security management with Two-Factor Authentication
8	Study and implementation of Single-Sing-On
9	Managing Hyper-V environment with SCVVM 2012
10	Using Data Protection Manager for Backup and Recovery
11	Show the implementation of web service and perform arithmetic operations (addition, division).
12	Implement virtualization using VMWare ESXi Server.
13	Study and Implementation of single-sign-on.
14	Develop application for Google App Engine
15	Write a program for implementing a Client Server communication model using TCP.

Module/ Unit	Course Description	Hrs	CO No.	PSO No.	PO No.
1	Introduction	15h	1	1	1
2	Cloud Platforms	15h	2	2	2
3	Management of cloud services	15h	3	3	3
4	Security in Cloud Computing	15h	4	2	8

Course Description			
Semester	П		
Course Name	Natural Language Processing		
Course Code	PCS2NLP		
Eligibility for Course	B.Sc.		
Credit	4		
Hours	60		

- To understand the core concepts of Natural language processing and levels of language analysis
- To understand the basic algorithms and techniques used in NLP, such as word, syntactic, semantic and sentiment analysis.
- To examine the concept of Word Sense Disambiguation, Part of Speech (PoS) tagging

Course outcomes:

- 1. Design and implement NLP applications that solve real-world problems such as sentiment analysis, named entity recognition, and machine translation.
- 2. Develop practical skills in implementing NLP techniques for word level, syntactic, and semantic analysis to solve real-world problems.
- 3. Demonstrate a solid understanding of the fundamental concepts and techniques of NLP, including linguistic theories, parsing, tokenization, and part-of-speech tagging

	Syllabus	Total 60L
Unit I	 Introduction to Natural Language Processing: Basic concepts of Natural language Processing, Evolution of NLP, Features and Applications of NLP, Issues and Challenges in NLP, Phases of NLP, Levels of Analysis: Phonetics, Phonology, Morphology, Syntax, Semantics, Sentiment and Pragmatics ,Tools and techniques used for performing these analysis, ambiguities, Types of ambiguities. Linguistic Resources: Corpus, elements of corpus design, TreeBank corpus, ProBank corpus, VerbNet, WordNet, elements of Noun, Verb, Adjective, Adverbial phrases, Top down and Bottom up parser(Stanford parser) 	15L
Unit II	 Word Level Analysis: Regular Expressions, Properties and Examples of Regular Expressions, Regular Sets & Their Properties, Finite State Automata, Relation between Finite Automata, Regular Grammars and Regular Expressions, Types of Finite State Automaton (FSA), Morphological Parsing, Types of Morphemes. Syntactic Analysis: Parser, Derivation, Parse Tree, Grammar, Phrase Structure or Constituency Grammar, Dependency Grammar, Context Free Grammar 	15L
Unit III	Semantic & Sentiment Analysis: Elements of Semantic Analysis, Homonymy, Polysemy, Synonymy, Hyponymy, Meaning Representation, Approaches to Meaning Representations, Need of Meaning Representations, Lexical Semantics, Importance of sentiment analysis, Types and challenges of sentiment analysis	15L

Unit IV	Word Sense Disambiguation: Evaluation of WSD, Approaches,
	Methods , Applications and Difficulties in WSD, Word Sense
	Disambiguation (WSD) Applications: Named Entity Recognition,
	Information retrieval, Question answers system, Machine
	translation
	Discourse Processing: Concept of coherence, Discourse structure,
	Algorithms for Discourse Segmentation, Text coherence, Reference
	Resolution.
	Part of Speech Tagging(Pos): Rule-based, Stochastic,
	Transformation-based, Hidden Markov Model PoS Tagging

Text Books:

- Daniel Jurafsky, James H. Martin —Speech and Language Processing Second Edition, Prentice Hall, 2008.
- Christopher D.Manning and Hinrich Schutze, Foundations of Statistical Natural Language Processing —, MIT Press, 1999.
- D. Jurafsky, J. H. Martin, "Speech and Language Processing", Pearson Education, 2002.

References:

- 1. Siddiqui and Tiwary U.S., Natural Language Processing and Information Retrieval, Oxford University Press (2008).
- 2. https://monkeylearn.com/sentiment-analysis
- 3. Daniel M Bikel and Imed Zitouni Multilingual natural language processing applications Pearson, 2013
- Alexander Clark (Editor), Chris Fox (Editor), Shalom Lappin (Editor) The Handbook of Computational Linguistics and Natural Language Processing — ISBN: 978-1-118
- 5. Steven Bird, Ewan Klein, Natural Language Processing with Python, O'Reilly

5. Brian Neil Levine, An Introduction to R Programming

6. Niel J le Roux, Sugnet Lubbe, A step by step tutorial: An introduction into R application and programming

7. Christopher D. Manning, Hinrich Schutze, Foundations of Statistical Natural Language Processing,

The MIT Press, Cambridge, Massachusetts, 1999.

Sr. No.	List of Practical Experiments on Natural Language Processing
Note:	- The following set of practicals can be performed using any Python
Librar	ies for NLP such as NLTK, spaCy, genism:
Link:-	https://www.python.org/downloads/
1	Write a program to implement sentence segmentation and word tokenization
2	Write a program to implement stemming and lemmatization
3	Write a program to implement a tri-gram model
4	Write a program to implement PoS tagging using HMM & Neural Model
5	Write a program to implement syntactic parsing of a given text
6	Write a program to implement dependency parsing of a given text
7	Write a program to implement Named Entity Recognition (NER)
8	Write a program to implement Text Summarization for the given sample text
9	Write a program to classify the sentiment of a given text as positive, negative, or neutral.
10	Write a program to convert speech to text and text to speech.
11	Write a program to extract structured information from unstructured text, such as dates, addresses, and phone numbers.
12	Write a program to build a system that translates text from one language to another.
13	Write a program to develop a system to retrieve relevant information from a large

	collection of documents based on user queries.
14	Write a program to predict the next word in a given sequence of words, enabling tasks like autocomplete or text generation.
15	Write a program to develop algorithms or use existing libraries to assign appropriate PoS tags to words in a given text.

Module /Unit	Course Description	Hrs.	CO No.	PSO No.	PO No.
1	Introduction to NLP & Linguistic Resources	15h	1	1	1
2	Word Level, Syntactic, Semantic, Sentiment Analysis	15h	2	2	3
3	Word Sense Disambiguation, Discourse Processing and Part of Speech Tagging(Pos) Tagging	15h	3	2	3

Course Description				
Semester	П			
Course Name	Security(Cryptography and Cryptanalysis)			
Course Code	PCS2CRC			
Eligibility for Course	B.Sc.			
Credit	4			
Hours	60			

Course Objectives:

- To understand cryptography and its applications.
- To develop a basic understanding of cryptographic mechanisms.
- To understand the working of symmetric cipher
- To understand the working of hash function and digital signature

Course Outcomes:

Learners will be able to

- 1. Analyze the modes of attacks and security threats
- 2. Understand the hierarchy of cipher
- 3. Interpret the working of DES
- 4. Interpret the working of RSA cryptosystem

	Syllabus	Total 60 L
Unit I	Introduction and Classical Ciphers:	15 L
	Security: Computer Security, Information Security, Network Security,	
	CIA Triad: Confidentiality, Integrity, Availability, Cryptography,	
	Cryptosystem, Cryptanalysis, Security Threats:,	
	Attacks: Passive (Release of message, Traffic analysis), Active (Replay,	
	Denial of service)	
	Security Services: Authentication, Access Control, Nonrepudiation	
	Security Mechanisms, Policy and Mechanism	
	Classical Cryptosystems: Hierarchy of cipher	
	Substitution Techniques:- Monoalphabetic: Caesar Cipher, Hill	
	- Polyalphabetic: Vigenere Cipher (Variants: vernam , one time pad),	
	Playfair	
	Transposition Techniques: Rail Fence Cipher, simple columnar Modern	
	Ciphers: Block Ciphers, Stream Ciphers, Symmetric Ciphers,	
	Asymmetric Ciphers	

Unit II	Symmetric Ciphers:	15 L
	Feistel Cipher Structure, Substitution Permutation Network (SPN) Finite	
	Fields: Basic concepts of Groups, Rings, and Fields, GCD, Euclidean	
	Algorithm, Modular Arithmetic, Set of Residue (Zn), Congruence,	
	Residue classes, Quadratic residue, Operations on Zn (Addition,	
	Subtraction, Multiplication), Properties of Zn, Inverses: Additive Inverse,	
	Multiplicative Inverse, Relatively Prime, Extended Euclidean Algorithm,	
	Galois Fields (GF(p) & GF(2n)), Polynomial Arithmetic : Addition,	
	Multiplication and Division over Galois Field, blowfish & International	
	Data Encryption Standard (IDEA): Key Generation, Encryption and	
	Decryption Process	
	Data Encryption Standards (DES): Key Generation, Encryption and	
	Decryption Process	
	Modes of Block Cipher Encryptions (Electronic Code Book, Cipher	
	Block Chaining, Cipher Feedback Mode, Output Feedback Mode,	
	Counter Mode)	
	Message Authentication, Message Authentication Functions, Message	
	Authentication Codes, Hash Functions, Properties of Hash functions,	
	Applications of Hash Functions	
Unit III	Asymmetric Ciphers & Cryptographic Hash Functions, Digital	15 L
	Signatures:	
	Public Key Cryptosystems: Applications of Public Key Cryptosystems	
	Distribution of public key: Distribution of secret key by using public	
	key cryptography,Diffie-Hellman Key Exchange, Man-in-the-Middle	
	Attack	
	Digital Signatures: Direct Digital Signatures, Arbitrated Digital	
	Signature	
	Digital Signature Standard: The DSS Approach, Digital Signature	
	Algorithm(DSA)	
	Message Digests: Details of MD4 and MD5 algorithms	

Unit IV	RSA Cryptosystem:	15 L
	The RSA Algorithm, Primarily Testing, Legendre and Jacobi Symbols,	
	The Solovay Strassen Algorithm, The Miller-Rabin Algorithm, Factoring	
	Algorithm: The pollard p-1 Algorithm, Dixon's Random Squares	
	Algorithm, Attacks on RSA, The Rabin Cryptosystem. Public Key	
	Cryptosystems: The idea of public key Cryptography, The Diffie-Hellman	
	Key Agreement, ElGamal Cryptosystem, The Pollard Rho Discrete	
	Logarithm Algorithm, Elliptic Curves, Knapsack problem.	

Text Books

- W. Stallings, Cryptography and Network Security: Principles and Practice
- Cryptography and Network Security by Atul Kahate TMH. Cryptography: Theory and Practice, Douglas Stinson, CRC Press, CRC Press LLC

References

- Cyber Security Operations Handbook by J.W. Rittinghouse and William M.Hancok Elseviers
- Information Security and cyber laws, Saurabh Sharma, student series, Vikas publication.
- Encryption, Ankit Fadia and J. Bhattacharjee, Vikas publication
- Cryptography and Network Security by Behrouz A. Forouzan, TATA McGraw hill.

Sr. No	List of Practical Experiments
1	Implement following Substitution Ciphers a. Caesar Cipher b. Modified Caesar Cipher
2	Implement following Substitution Ciphers a. Mono-Alphabetic b. Poly-Alphabetic
3	Implement following Transposition Ciphers a. Rail fence Techniques b. Simple Columnar
4	Implement following Transposition Ciphers a. Multicolumnar b. Vernam Cipher
5	Implement RC4
6	Implement RC5
7	Implement DES
8	Implement blowfish
9	Implement IDEA
10	To implement the Signature scheme-Digital Signature Standard
11	To calculate the message digest of a text using the SHA-1 algorithm
12	To calculate the message digest of a text using the MD5 algorithm
13	Write a program to implement the DSA Algorithm to perform encryption and decryption.
14	To implement Diffie Hellman key exchange algorithm
15	Implement hash functions

Module/ Unit	Course Description	Hrs	CO No.	PSO No.	PO No.
1	Introduction	15h	1	1	1
2	Symmetric cipher	15h	2	3	2
3	Asymmetric cipher	15h	3	3	2
4	RSA Cryptosystem	15h	4	3	2

Course Description	
Semester	Π
Course Name	Business Intelligence and Big data Analytics
Course Code	PCS2BI1
Eligibility for Course	B.Sc.
Credit	4
Hours	60

Course Objectives:

- To apply the basic concepts and methods of business analytics and data warehouse.
- To improving strategic decision-making by designing a Data Warehouse model.
- To explore data mining concepts and solutions.

Course Outcomes:

Learners will be able to

- 1. Describe the concepts of Business Intelligence and data warehouse.
- 2. Build business Data Warehouse.
- 3. Evaluate data mining process and Association analysis.

	Syllabus	Total 60 L
Unit I	Introduction to Business Intelligence and Business Data Warehouse:	15 L
	Operational and Decision Support System, Data-Information- Knowledge- Decision making-Action cycle. Basic definitions- Business Intelligence; Data warehousing, Business Intelligence architecture, Use and benefits of Business Intelligence. Knowledge Discovery in Databases: KDD process model, Data Pre-processing: Cleaning: Missing Values; Noisy Values; Inconsistent values; redundant values. Outliers, Integration, transformation, reduction, Discretization: Equal Width Binning; Equal Depth Binning, Normalization, Smoothing	
Unit II	Designing Business Data Warehouse: Definition of Data warehouse, Logical architecture of Data Warehouse, Data Warehouse model- Enterprise warehouse; Data Marts; Virtual warehouse. Populating business Data Warehousing: data integration and extract, transform, load (ETL).	15 L
Unit III	OLTP and OLAP systems, Designing business information warehouse: Principles of dimensional modeling, Data cubes, Data cube operations, data cube schemas	15 L
Unit IV	Introduction to Data Mining: Data mining definitions and process: business and data understanding. Association Analysis: Definition of association rule, General issues: Support; Confidence; Lift; Conviction, Frequent Item sets: APriori Algorithm; Issues with APriori Algorithm, Data structures: Hash tree and FP tree.	15 L

Text books:

- Business Intelligence (2nd Edition), Efraim Turban, Ramesh Sharda, Dursun Delen, David King, Pearson (2013)
- Business Intelligence for Dummies, Swain Scheps, Wiley Publications (2008).
- Building the Data Warehouse, Inmon: Wiley (1993).
- Data Mining: Introductory and Advanced Topics, Dunham, Margaret H, Prentice Hall (2006)
- Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, Witten, Ian and Eibe Frank, Morgan Kaufmann (2011)

References:

- Business Intelligence Road Map, Larissa T. Moss, Shaku Atr, Addison-Wesley
- Data Modeling Techniques for Data Warehousing by IBM; International Technical Support Organization, Chuck Ballard, Dirk Herreman, Don Schau, Rhonda Bell, Eunsaeng Kim, Ann Valencic:<u>http://www.redbooks.ibm.com</u>
- Data Mining: Concepts and Techniques, The Morgan Kaufmann Series in Data Management Systems, Han J. and Kamber M. Morgan Kaufmann Publishers, (2000).
- Data Mining with Microsoft SQL Server 2008, MacLennan Jamie, Tang ZhaoHui and Crivat Bogdan, Wiley India Edition (2009).

Sr. No.	List of Practical Experiments
1	Demonstrate KDD process.
2	Import the legacy data from different sources such as (Excel, SqlServer, Oracle etc.) and load in the target system. (You can download sample database such as Adventureworks, Northwind, foodmart etc.)
3	Demonstrate data preprocessing techniques
4	Perform the Extraction Transformation and Loading (ETL) process to construct the database in the Sqlserver.
5	Create the Data staging area for the selected database.

6	Create the cube with suitable dimension and fact tables based on ROLAP, MOLAP and HOLAP model.	
7	Create the ETL map and setup the schedule for execution.	
8	Execute the MDX queries to extract the data from the datawarehouse.	
9	Import the datawarehouse data in Microsoft Excel and create the Pivot table and Pivot Chart.	
10	Import the cube in Microsoft Excel and create the Pivot table and Pivot Chart to perform data analysis.	
11	Apply the what – if Analysis for data visualization. Design and generate necessary reports based on the datawarehouse data	
12	Develop an application to pre-process data imported from external sources.	
13	Create association rules by considering suitable parameters.	
14	Write a program in Python based on Hash Tree	
15	Write a program in Python based on FP Tree	

The BI tools such as Tableau / Power BI / BIRT / R / Excel or any other can be used.

Module / Unit	Course Description	Hrs.	CO No.	PSO No.	PO No.
1	Introduction to Business Intelligence and Business Data Warehouse	15h	1,2	1	2
2	Designing Business Data Warehouse		3	2	5
3	Introduction to Data Mining	15h	1	3	6

Course Descript	Course Description			
Semester	II			
Course Name	Machine Learning			
Course Code	PCS2MAL			
Eligibility for Course	B.Sc.			
Credit	2			
Hours	30			

Course Objectives:

- To introduce key concepts of machine learning
- To conceptualize undirected graphical model for real problems

Course Outcomes:

1. Acquire point estimation techniques for estimating parameters of machine learning models

2. Analyze advanced machine learning techniques for classification

	Syllabus Total 30 L			
Unit I	Probability: A brief review of probability theory, Some common discrete distributions, Some common continuous distributions, Joint probability distributions,			
	Transformations of random variables, Monte Carlo approximation, Information theory. Directed graphical models (Bayes nets): Introduction, Examples, Inference, Learning, Conditional independence properties of DGMs. Mixture models and EM algorithm: Latent variable models, Mixture models, Parameter estimation for mixture models, The EM algorithm.			

Unit II	Kernels: Introduction, kernel function, Using Kernel inside GLMs, kernel trick, Support vector machines, Comparison of discriminative kernel methods. Markov and hidden Markov models: Markov models, Hidden Markov Models (HMM), Inference in HMMs, Learning for HMMs. Undirected graphical models (Markov random fields): Conditional independence properties of UGMs, Parameterization of MRFs, Examples of MRFs, Learning, Conditional random fields (CRFs), applications of CRFs.			
Text books:	Machine Learning: A Probabilistic Perspective: Kevin P Murphy, The MIT Press Cambridge (2012).			
References:	Introducing Monte Carlo Methods with R, Christian P. Robert,			

Sr. No.	List of Practical Experiments
1	Find probability density function or probability mass function, cumulative distribution function and joint distribution function to calculate probabilities and quantiles for standard statistical distributions.
2	Find cumulative distribution function and joint distribution function to calculate probabilities and quantiles for standard statistical distributions.
3	Create a Directed Acyclic Graph (DAG) using set of formulae. Find parents and children of nodes. Read conditional independence from DAG. Add and remove edges from graph.
4	Create a Directed Acyclic Graph (DAG) using set of vectors. Find parents and children of nodes. Read conditional independence from DAG. Add and remove edges from graph.

5	Create a Directed Acyclic Graph (DAG) using set of matrices. Find parents and children of nodes. Read conditional independence from DAG. Add and remove edges from graph.	
6	Create a Bayesian network for a given narrative. Set findings and ask queries [One may use narratives like 'chest clinic narrative' and package gRain for the purpose].	
7	Implement EM algorithm.	
8	Use string kernel to find the similarity of two amino acid sequence where similarity is defined as the number of a substring in common.	
9	Demonstrate SVM as a binary classifier.	
10	Create a random graph and find its page rank.	
11	Apply random walk technique to a multivariate time series.	
12	Implement two stage Gibbs Sampler.	
13	Implement Metropolis Hastings algorithm.	
14	Demonstrate sampling techniques.	
15	Demonstrate filtering techniques.	

Module /Unit	Course Description	Hrs.	CO No.	PSO No.	PO No.
	Probability				
1		15h	1	1	1
	Kernels				
2		15h	2	2	3