

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL

(AUTONOMOUS COLLEGE)

Re-accredited 'A+' Grade by NAAC
'College with Potential for Excellence' Status Awarded by UGC
'Best College Award' by University of Mumbai
NEP 2020

Syllabus for M.Sc.-I in Organic Chemistry

Programme: M.Sc.

Course: M.Sc.-I Analytical Chemistry

Programme Code: MSCAC1019

Choice Based Credit, Grading and Semester System (60:40)

w.e.f. Academic Year 2023-2024

After completion of M.Sc. programme students will acquire

S. N.	After completion of M.Sc. program students will acquire	Graduate Attribute
PO1	An ability to identify and describe broadly accepted methodologies of science, and different modes of reasoning.	Disciplinary knowledge
PO2	An ability to demonstrate proficiency in various instrumentation, modern tools, advanced techniques and ICT to meet industrial expectations and research outputs.	Disciplinary knowledge/Digital literacy
PO3	An ability to identify problems, formulates, and proves hypotheses by applying theoretical knowledge and skills relevant to the discipline.	Problem-solving
PO4	An ability to be articulate thoughts, research ideas, information, scientific outcomes in oral and in written presentation to range of audience.	

PO5	A capacity for independent, conceptual and creative thinking, analysis and problem solving through the existing methods of enquiry.	Problem solving
PO6	Skills required for cutting edge research, investigations, field study, documentation, networking, and ability to build logical arguments using scholarly evidence.	Research skills
PO7	An ability to portray good interpersonal skills with ability to work collaboratively as part of a team undertaking a range of different team roles	Teamwork
PO8	The ability to understand ethical responsibilities and impact of scientific solutions in global, societal and environmental context and contribute to the sustainable development	Moral and ethical awareness/ multicultural competence
PO9	An ability to demonstrate leadership, to take action and to get others involved.	Leadership
PO10	An openness to and interest in, life-long learning through directed and self-directed study	Self-directed learning
PO11	An ability to translate the knowledge and demonstrate the skills required to be employed and successful professional development.	Life-long learning

Programme: M.Sc. Analytical Chemistry

PSOs No	After completing the programme in M.Sc. Analytical Chemistry, Student will able to:	Graduate Attribute
PSO1	Understand the principles, methodologies of analytical techniques and their applications in industrial, social, and environmental context.	Disciplinary knowledge/ Multicultural competence
PSO2	Integrate and apply the knowledge of the analytical methods, tools, and ICT facilities to the range of scientific problems using critical thinking and communicate results effectively.	Problem solving
PSO3	Demonstrate research skills in the core and allied areas of chemical sciences, professionalism and ethical conduct.	Research skills/ lifelong learning

Masters in Science (Analytical Chemistry) Syllabus for Semester I and II **Preamble:** Master of Science (M.Sc.) in Analytical chemistry is a post-graduate course of department of chemistry, Changu Kana Thakur Arts, Commerce & Science College, New Panvel (Autonomous). There are two P.G. programmes in Chemistry, namely M.Sc. programme in Organic Chemistry and M.Sc. programme in Analytical Chemistry. Both P.G. programmes are equivalent in all respect for employment and higher studies. Each of these two P.G. programmes shall extend over a period of two academic years comprising

of four semesters. The syllabi and scheme of examinations of these two programmes are detailed below. The theory and practical's of courses of two Semesters of the two programmes are same. Chemistry is a fundamental science and has contributed immensely to the improvement of the life of human beings by providing many of human requirements and essentialities. Chemistry is important to the world economy as well. The developments in Chemistry during last few decades are phenomenal. It is also seen that these developments are crossing the traditional vertical boundaries of scientific disciplines; the more inclination is seen towards biological sciences. New branches of chemistry are emerging and gaining importance, such as bioorganic chemistry, materials chemistry, computational chemistry, etc.

The practice of Chemistry at industrial scale also is undergoing radical changes and is more or more based on deep understanding the chemical phenomena. The emerging Chemical Technologies are highly science based. The aid of computers has not only accelerated growth in the practice of Chemistry, but revolutionized the entire field. A chemist cannot isolate himself from other disciplines. Thus, after a long span of more and more specialization in graduate and post-graduate syllabi, a symbiotic interdisciplinary approach now seems to be more relevant.

M. Sc. Analytical Chemistry

For the subject of chemistry there shall be four papers for 60 lectures each comprising of four units of 15 L each.

Semester-I

- 1. Paper-I / Physical Chemistry,
- 2. Paper- II / Organic Chemistry
- 3. Paper- III / Analytical Chemistry
- 4. Paper- IV/Inorganic Chemistry-I, II (Electives)
- 5. Paper- V/Research Methodology

Semester-II

- 1. Paper-I / Physical Chemistry,
- 2. Paper- II / Organic Chemistry
- 3. Paper- III / Analytical Chemistry
- 4. Paper- IV/Inorganic Chemistry-I, II (Electives)

5. Paper/On Job Training

☐ Scheme of Examination

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40% marks in the first part and by conducting the Semester End Examinations with 60% marks in the second part. The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below-

A) Internal Assessment: 40 % 40 Marks

Sr. No.	Particular	Marks
01	One periodical class test / online examination to be conducted in the given semester	20 Marks
02	Any One tools out of these (15 Marks each) 1. Group/ Individual Project 2. Presentation and write up on the selected topics of the subjects / Case studies. 3. Test on Practical Skills 4. Open Book Test 5. Quiz	15 Marks
03	Active participation	05

Question Paper Pattern

(Periodical Class Test for the Courses at Under Graduate Programmes)

Maximum Marks: 20 Duration: 40 Minutes

Questions to be set: 02

All Questions are Compulsory

Question No.	Particula r	Marks
Q-1	Match the Column / Fill in the Blanks / Multiple Choice Questions/ Answer in One or Two Lines (Concept based Questions) (1 Marks / 2 Marks each)	10 Marks
Q-2	Answer in Brief (Attempt any Two of the Three) (5 Marks each)	10 Marks

• Duration: The examination shall be of $2\frac{1}{2}$ hours duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be five questions each of 12 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

□ Passing Standard

The learners shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment and Semester End Examination. The learners shall obtain minimum of 40% marks (i.e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i.e. 24 Out of 60) separately, to pass the course and minimum of grade D in each project wherever applicable to pass a particular semester.

❖ Guidelines and Evaluation pattern for project work (100 Marks)

Introduction

Inclusion of project work in the course curriculum of the M.Sc. programme is one of the ambitious aspects in the programme structure. The main objective of inclusion of project work is to inculcate the element of research work challenging the potential of learner as regards to his/ her eager to enquire and ability to interpret particular aspect of the study in his/ her own words. It is expected that the guiding teacher should undertake the counselling sessions and make the awareness among the learners about the methodology of formulation, preparation and evaluation pattern of the project work.

- There are two modes of preparation of project work
 - 1. Project work based on research methodology in the study area
 - 2. Project work based on internship in the study area

	Theory: Th	ne Semester End Examination for the	ory course work will		
	be conducte	ed as per the following scheme.			
τ.	Each theory	paper shall be of two- and half-hour	duration.		
I	All questions are compulsory and will have internal options.				
	Q-1	From Unit – I (having internal opti	ions.) 12 M		
	Q-2	From Unit – II (having internal op	tions.) 12M		
	Q-3	otions.) 12M			
	Q-4	From Unit – IV (having internal op	otions.) 12M		
Q-5 Questions from all the FOUR Units weightage of marks allotted to each Unit. 12					
	Practical	The Semester End Examination			
II		work will be conducted as per the	following scheme.		
Sr.	Particulars of	of E <mark>xternal Practical Examinati</mark> on	Marks%		
No.					
1	Laboratory	Work	80		
2	Journal	AN SER	10		
3	Viva	VEL.RA'	10		
	TOTAL		100		
	7. थ. शि. प्र. संस्था				

Choice Based Credit, Grading and Semester System (CBCGS) To be implemented from the Academic year 2023-24

M.Sc.-I Analytical Chemistry Semester- I

Course Code	Unit	Topics	Cr edi ts	L / Week
	I	Thermodynamics-I		1
PSC1PC1	II	Quantum Chemistry	4	1
	III	Chemical Dynamics-I	_	1
	IV	Electrochemistry		1
	I	Addition reactions		1
PSC1OC1	II	Nucleophilic substitution reactions and Aromaticity	4	1
	III	Stereochemistry	-	1
	IV	Oxidation and Reduction		1
	I	Language of Analytical Chemistry		1
PSC1AC1	II	Quality in Analytical Chemistry	4	1
	III	Optical Methods		1
	IV	Thermal Methods		1
PSC1PCP + PSC1ACP	-	Practical Course Practical (Physical Chemistry + Analytical Chemistry)	8	16
	I	Chemical Bonding		
PSC1IC2			2	1
Elective-I	II	Molecular Symmetry and GroupTheory		1
PSC1IC2 Elective-2	III	Materials Chemistry and Nanomaterials	2	1
	IV	Characterization of Coordination Compounds		

	Practical's of	2	8
	Practical's (Inorganic Chemistry + Organic Chemistry)		
I	Research and Literature Survey	4	1
II	Data Analysis		
			1
III	Methods of Scientific Research and Writing		1
IV	Chemical Safety and Ethical handling of Chemicals		1
	III	Practical's (Inorganic Chemistry + Organic Chemistry) I Research and Literature Survey II Data Analysis III Methods of Scientific Research and Writing IV Chemical Safety and Ethical handling of	Practical's (Inorganic Chemistry + Organic Chemistry) I Research and Literature Survey II Data Analysis III Methods of Scientific Research and Writing IV Chemical Safety and Ethical handling of

Choice Based Credit, Grading and Semester System (CBCGS)To be implemented from the Academic year 2023-2024

M.Sc.-I Analytical Chemistry Semester- II

Course Code	Unit	Topics	Credi ts	L / Week
	I	Chemical Thermodynamics II		1
	II	Quantum Chemistry II		1
PSC2PC2	III	Chemical Kinetics and Molecular Reaction Dynamics	4	1
	IV	Solid State Chemistry and Phase Equilibria		1
	I	Alkylation of NucleophilicCarbon Intermediates Reaction of carbon nucleophiles with carbonyl groups		1
	II	Reactions and Rearrangements	4	1
PSC2OC2	III	Eliminations Reactions and Organometallic Chemistry	4	1
	IV	NMR spectroscopy and Mass spectrometry		1
	I	Chromatography		1
	II	X-ray spectroscopy, Mass spectrometry, Radioanalytical Methods		1
PSC2CH4	III	SurfaceAnalytical TechniquesAtomic Spectroscopy	4	1
	IV	Electroanalytical Methods		1
PSC1PCP + PSC1ACP	-	Practical Course Practical (Physical Chemistry + Analytical Chemistry)	8	16
	I	Inorganic Reaction Mechanism		1
PSC2IC2 Elective-I	II	Organometallic Chemistry of Transitionmetals		1
DSCOLCO	III	Environmental Chemistry	_	1
PSC2IC2 Elective-I	IV	Bioinorganic Chemistry	4	1

PSC1ICP + PSC1OCP		Practicals Course Practical's (Inorganic Chemistry + Organic Chemistry)	2	8
	ОЈТ	On Job Training	4	60

SEMESTER-I

Course Description				
Semester	I			
Course Name	Physical Chemistry			
Course Code	PSC1PC1			
Eligibility for Course	T.Y.B.Sc. (Chemistry)			
Credit	4			
Hours	60			

Course Objectives

- 1. To develop laboratory competence in relating physical aspects in chemistry
- 2. To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment, and modern instrumentation.
- 3. To provide the students with sound preparation for requirement of modern industry and provide competency in basic academic research as well as a cohesive, clearly structured overview of Chemistry

Course Outcomes After successful completion of this course students will be able to

Sr.	Course Outcomes	Bloom
No		Taxonomy
110		Level (BLT)
CO1	Prove Maxwell relations and its significance and applications to ideal	Understand
	gases, Joule Thomson experiment, Joule Thomson coefficient and	
	inversion temperature. Apply Third law of Thermodynamics to find out	
	absolute entropy	
CO2	Make use of quantum mechanics for Particle waves and Schrödinger	Apply
	wave equation, wave functions, properties of wave functions,	
	Normalization of wave functions, orthogonality of wave functions.	
	Particle in a one, two- and three-dimensional box	
CO3	Define, understand basic terms of Chemical Dynamics i.e. rate constant,	Evaluate
	order of reaction, molecularity of reaction also compare Composite	
	Reactions and Polymerization reactions	
CO4	Make use of of Colloids and Surface Phenomena in daily applications	Apply

Unit	Course Description I	
1.	Thermodynamics-I	
	1.1. State function and exact differentials. Maxwell equations, Maxwell thermodynamic Relations; its significance and applications to ideal gases, Joule Thomson experiment, Joule Thomson coefficient, inversion temperature, Joule Thomson coefficient in terms of van der Waals constants. [8L]	15
	1.2. Third law of Thermodynamics, Entropy change for a phase transition, absolute entropies, determination of absolute entropies in terms of heat capacity, standard molar entropies and their dependence on molecular mass and molecular structure, residual entropy. [7L]	
2.	Quantum Chemistry	
	 2.1. Classical Mechanics, failure of classical mechanics: Need for Quantum Mechanics. 2.2. Particle waves and Schrödinger wave equation, wave functions, properties of wave functions, Normalization of wave functions, orthogonality of wave functions. 2.3. Operators and their algebra, linear and Hermitian operators, operators for the dynamic variables of a system such as, position, linear momentum, angular momentum, total energy, eigen functions, eigen values and eigen value equation, Schrödinger wave equation as the eigen value equation of the Hamiltonian operator, average value and the expectation value of a dynamic variable of the system, Postulates of Quantum Mechanics, Schrödinger"s Time independent wave equation from Schrödinger"s time dependent wave equation. 2.4. Application of quantum mechanics to the following systems: a) Free particle, wave function and energy of a free particle. b) Particle in a one, two and three dimensional box, separation of variables, Expression for the wave function of the system, expression for the energy of the system, concept of quantization, introduction of quantum number, degeneracy of the energy levels. c) Harmonic oscillator, approximate solution of the equation, Hermite polynomials, expression for wave function, expression for energy, use of the recursion formula. 	15
3.	Chemical Dynamics-I	
	3.1. Composite Reactions: Recapitulation: Rate laws, Differential rate equations Consecutive reactions, Steady state Approximation, rate determining steps, Microscopic Reversibility and Detailed Balanced Chain reactions-chain initiation processes. Some inorganic mechanisms: formation and decomposition of phosgene, decomposition of ozone, Reaction between Hydrogen and	15

Bromine and some general examples Organic Decompositions: Decomposition of ethane, decomposition of acetaldehyde Gas phase combustion: Reaction between hydrogen and oxygen, Semenov – Hinshelwood and Thompson mechanism, Explosion limits and factors affecting explosion limits.

3.2. Polymerization reactions: Kinetics of stepwise polymerization,

- 3.2. Polymerization reactions: Kinetics of stepwise polymerization, Calculation of degree of polymerization for stepwise reaction. Kinetics of free radical chain polymerization, Kinetic chain length and estimation of average no of monomer units in the polymer produced by chain polymerization.
- 3.3. Reaction in Gas Phase

Unimolecular Reactions: Lindeman-Hinshelwood theory, Rice-Ramsperger-Kasssel (RRK) theory, Rice-Ramsperger-Kassel Marcus (RRKM) theory.

4. Colloids and Surface Phenomena

Colloidal Systems-Sols, Lyophilic and lyophobic sols, properties of sols, coagulation. Sols of surface-active reagents, surface tension and surfactants, electrical phenomena at interfaces including electrokinetic effects, micelles, reverse micelles, solubilization.

15

Thermodynamics of micellization, critical micelle concentration, factors affecting critical micelle concentration (cmc), experimental methods of cmc determination, Micellar catalysis. Adsorption, adsorption isotherms, methods for determining surface structure and composition, BET equation, surface area determination,

Gibbs adsorption equation and its verification. Application of photoelectron spectroscopy, ESCA and Auger spectroscopy to the study of surfaces.

Numerical Problems

References

- 1. Peter Atkins and Julio de Paula, Atkin"s Physical Chemistry, 7th Edn., Oxford University Press, 2002.
- 2. K.J. Laidler and J.H. Meiser, Physical Chemistry, 2nd Ed., CBS Publishers and Distributors, New Delhi, 1999.
- 3. Robert J. Silby and Robert A. Alberty, Physical Chemistry, 3rd Edn., John Wiley and Sons (Asia) Pte.Ltd., 2002.
- 4. Ira R. Levine, Physical Chemistry, 5th Edn., Tata McGraw-Hill New Delhi, 2002.
- 5. G.W. Castellan, Physical Chemistry, 3rd Edn., Narosa Publishing House, New Delhi, 1983.

- 6. S. Glasstone, Text Book of Physical Chemistry, 2nd Edn., McMillan and Co. Ltd., London, 1962
- 7. B.K. Sen, Quantum Chemistry including Spectroscopy, Kalyani Publishers, 2003.
- 8. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, 1994.
- 9. R.K. Prasad, Quantum Chemistry, 2nd Edn., New Age International Publishers, 2000.
- 10. S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.
- 11. W.G. Davis, Introduction to Chemical Thermodynamics A Non Calculus Approach, Saunders, Philadelphia, 19772.
- 12. Peter A. Rock, Chemical Thermodynamics, University Science Books, Oxford University Press, 1983.
- 13. Ira N. Levine, Quantum Chemistry, 5th Edn., Pearson Education (Singapore) Pte.Ltd., Indian Branch, New Delhi, 2000.
- 14. Thomas Engel and Philip Reid, Physical Chemistry, 3rd Edn., Pearson Education Limited 2013.
- 15. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1st Edn., 1992. 16. Bockris, John O'M., Reddy, Amulya K.N., Gamboa-Aldeco, Maria E., Modern Electrochemistry, 2A, Plenum Publishers, 1998.
- 17. Physical Chemistry by Gurtu and Gurtu
- 18. A Text book of Physical Chemistry by K L kapoorVol5 , 2nd Edn

Physical Chemistry Practical

Course Description		
Semester	I	
Course Name	Physical Chemistry	
Course Code	PSC1PCP	
Eligibility for Course	T.Y. B.Sc. (Chemistry)	
Credit	2	
Hours	30	

After successful completion of this course students will be able to

Sr. No.	COs	Bloom Taxonomy Level (BLT)
CO1	Know the principles of different instruments like Potentiometry,	Understand
	Conductometry, pH Metry.	

CO2 Determine the heat of solution of sparingly soluble acid and identify the reaction between acetone and iodine.

Apply

Sr. No.	Course Description	Hrs
1.	To determine the heat of solution (ΔH) of a sparingly soluble acid (benzoic /salicylic acid) from solubility measurement at three different temperature.	4
2.	To study the variation of calcium sulphate with ionic strength and hence determine the thermodynamic solubility product of CaSO ₄ at room temperature.	4
3.	To investigate the reaction between acetone and iodine. Or Kinetics of reaction between bromate and iodide. (New expt.)	4
4.	To study the variation in the solubility of Ca(OH) ₂ in presence of NaOH and hence to determine the solubility product of Ca(OH) ₂ at room temperature.	4
5.	Graph Plotting of mathematical functions –linear, exponential and trigonometry and identify whether functions are acceptable or non-acceptable?	4
6.	To determine the mean ionic activity coefficient of an electrolyte by e.m.f. measurement.	4
7.	To study the effect of substituent on the dissociation constant of acetic acid conductometrically.	4
8.	To determine pKa values of phosphoric acid by potentiometric titration with sodium hydroxide using glass electrode.	4
9.	To verify Ostwald"s dilution law and to determine the dissociation constant of a weak mono-basic acid conductometrically.	4
10.	Determination of dissociation constant of dibasic acid.	

References:

- 1 Practical Physical Chemistry, B. Viswanathan and P.S. Raghavan, Viva Books Private Limited, 2005.
- 2 Practical Physical Chemistry, A.M. James and F.E. Prichard, 3rd Edn., Longman Group Ltd., 1974.
- 3 Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age International Publishers, 2001.

Course Description		
Semester	I	
Course Name	Organic Chemistry	

Course Code	PSC1OC1
Eligibility for Course	T.Y.B.Sc (Chemistry)
Credit	4
Hours	60

Course Objectives

- 4. To study the basics of addition reactions and their applications.
- 5. To study stereochemistry in man detail
- 6. To study the different reagents in the organic transformation.
- 7. To understand the role of carbon nucleophiles in organic synthesi

Course Outcomes

After successful completion of this course students will be able to

Sr. No.	CO Understand the types of reaction and their applications	Bloom Taxonomy Level (BLT) Remember
CO2	Summarize the various aspects of aromaticity, aliphatic and aromatic nucleophilic substitution reactions with their mechanism and examples.	Understand
СОЗ	Apply the concept of Configurational descriptors (R,S nomenclature) to chiral centres in Organic compounds	Apply
CO4	Predict the mechanism, selectivity, importance and applications of oxidizing and reducing agent	Apply

Unit	Course Description	Hrs	
1.	Addition Reactions:		
	1.1 Addition reactions to carbon carbon multiple bonds -Mechanism and		
	Stereochemical aspects of addition reaction Involving electrophile		
	1.2 Structural Effect and reactivity: Halogenation, Hydrohalogenation,		
	Hydration, Hydroxylation, Hydroboration, Epoxidation, Carbene		
	addition and Ozonolysis.		
	1.3. Acids and Bases: Factors affecting acidity and basicity:		
	Electronegativity and inductive effect, resonance, bond strength,		
	electrostatic effects, hybridization, aromaticity and solvation.		
	Comparative study of acidity and basicity of organic compounds on the		
	basis of pKa values, Leveling effect and non-aqueous solvents. Acid and		
	base catalysis – general and specific catalysis with examples.		
2.	Nucleophilic substitution reactions and Aromaticity:		
	2.1. Nucleophilic substitution reactions: (9 L) 2.1.1. Aliphatic		

nucleophilic substitution: SN1, SN2, SNi reactions, mixed SN1 and SN2 and SET mechanisms. SN reactions involving NGP - participation by aryl rings, α-and pi-bonds. Factors affecting these reactions: substrate, nucleophilicity, solvent, steric effect, hard-soft interaction, leaving group. Ambident nucleophiles.SNcA, SN1" and SN2" reactions.SN at sp2 (vinylic) carbon. 2.1.2. Aromatic nucleophilic substitution: SNAr, SN1, benzyne mechanisms. Ipso, cine, tele and vicarious substitution. 2.1.3. Ester hydrolysis: Classification, nomenclature and study mechanisms of acid and base catalyzed hydrolysis with suitable examples (Any two). Orientation and Reactivity-Effect of Substrate, Leaving group and attacking nucleophile 2.2. Aromaticity: (6 L) 2.2.1. Structural, thermochemical, and magnetic criteria for aromaticity, including NMR characteristics of aromatic systems. Delocalization and aromaticity. 2.2.2. Application of HMO theory to monocyclic conjugated systems. Frost-Musulin diagrams. Huckel"s (4n+2) and 4n rules. 2.2.3. Aromatic and antiaromatic compounds up-to 18 carbon atoms. Homoaromatic compounds. Aromaticity of all benzenoid systems, heterocycles, metallocenes, azulenes, annulenes, aromatic ions and Fullerene (C60)

3. Stereochemistry:

- 3.1. Concept of Chirality: Recognition of symmetry elements.
- 3.2. Molecules with two or more chiral centers: Constitutionally unsymmetrical molecules: erythro-threo and syn-anti systems of nomenclature. Interconversion of Fischer, Sawhorse, Newman and Flying wedge projections. Constitutionally symmetrical molecules with odd and even number of chiral centers: enantiomeric and meso forms, concept of stereogenic, chirotopic, and pseudoasymmetric centres. Stereo-descriptors: R, S, for chiral centres in acyclic and cyclic compounds.
- 3.3. Axial and planar chirality: Principles of axial and planar chirality. Stereochemical features and configurational descriptors (R,S) for the following classes of compounds: Allenes, Alkylidene cycloalkanes, Spirans, Biaryls (buttressing effect) (including BINOLs and BINAPs), Ansa compounds, Cyclophanes, trans-cyclooctenes.
- 3.4. Prochirality: Chiral and prochiral centres; prochiral axis and prochiral plane. Homotopic, heterotopic (enantiotopic and diastereotopic) ligands and faces. Identification using substitution and symmetry criteria. Nomenclature of stereoheterotopic ligands and faces. Symbols for stereoheterotopic ligands in molecules with i) one or more prochiral centres ii) a chiral as well as a prochiral centre, iii) a prochiral axis iv) a prochiral plane v) propseudoasymmetric centre. Symbols for enantiotopic and diastereotopic faces. E, Z nomenclature Resolution of Racemic mixtures

15

4. Oxidation and Reduction:

15

4.1. Oxidation: General mechanism, selectivity, and important applications of the following: 4.1.1. Dehydrogenation: Dehydrogenation of C-C bonds including aromatization of six membered rings using metal (Pt, Pd, Ni) and organic reagents (chloranil, DDQ). 4.1.2. Oxidation of alcohols to aldehydes and ketones: Chromium reagents such as K2Cr2O7/H2SO4 (Jones reagent), CrO3-pyridine (Collin"s reagent), PCC (Corey"s reagent) and PDC (Cornforth reagent), hypervalent iodine reagents (IBX, Dess-Martin periodinane). DMSO based reagents (Swern oxidation), Corey-Kim oxidation - advantages over Swern and limitations; and Pfitzner-Moffatt oxidation-DCC and DMSO and Oppenauer oxidation. 4.1.3. Oxidation involving C-C bonds cleavage: Glycols using HIO4; cycloalkanones using CrO3; aromatic rings using RuO4 and NaIO4. 4.1.4. Oxidation involving replacement of hydrogen by oxygen: oxidation of CH2 to CO by SeO2, oxidation of arylmethanes by CrO2Cl2 (Etard oxidation). 4.1.5. Oxidation of aldehydes and ketones: with H2O2 (Dakin reaction), with peroxy acid (Baeyer-Villiger oxidation) 4.2. Reduction: General mechanism, selectivity, and important applications of the following reducing reagents: 4.2.1. Reduction of CO to CH2 in aldehydes and ketones-Clemmensen reduction, WolffKishner reduction and Huang-Minlon modification. 4.2.2. Metal hydride reduction: Boron reagents (NaBH4, NaCNBH3, diborane, 9-BBN, Na(OAc)3BH, aluminium reagents (LiAlH4, DIBAL-H, Red Al, L and K- selectrides). 4.2.3. NH2NH2 (diimide reduction) and other non-metal based agents including organic reducing agents (Hantzschdihydropyridine). 4.2.4. Dissolving metal reductions: using Zn, Li, Na, and Mg under neutral and acidic conditions, Li/Na-liquid NH3 mediated reduction (Birch reduction) of aromatic compounds and acetylenes.

Organic Chemistry Practical

Course Description		
Semester	I	
Course Name	Organic Chemistry	
Course Code	PSC1OCP	
Eligibility for Course	T.Y.B.Sc (Chemistry)	
Credit	2	
Hours	30	

After successful completion of this course students will be able to

Sr.	COs	Bloom
No		Taxonomy Level
		(BLT)
CO1	Plan preparation of organic compounds	Apply
CO2	Demonstrate the skill of purification of organic compounds by recrystallization and sublimation methods.	Understand
CO3	Apply the thin layer chromatography technique to check the purity of the synthesized product.	Apply
CO4	Can Sketch the structure of organic compounds using software Chem Biodraw.	Apply

Sr.	Course Description	Hrs
No.		
1.	One step preparations	40
2.	(1.0 g scale) 1. Bromobenzene to p-nitrobromobenzene	
3.	2. Anthracene to anthraquinone	
4.	3. Benzoin to benzil	
5.	4. Anthracene to Anthracene maleic anhydride adduct	
6.	5. 2-Naphthol to BINOL	
7.	6. p-Benzoquinone to 1,2,4-triacetoxybenzene	
8.	7. Ethyl acetoacetate to 3-methyl-1-phenylpyrazol-5-one	
9.	8. Preparation of benzilic acid from benzil	
10	9. Preparation of p-iodonitrobenzene from p-nitroaniline	
11.	11. Use of Computer - Chem Draw-Sketch, ISI – Draw: Draw the structure of simple aliphatic, aromatic, heterocyclic organic compounds with substituents. Get the correct IUPAC name, Get ¹ HNMR and ¹³ C. Students can able to draw the one name reaction and its reaction mechanism.	

1. Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford

UniversityPress.

- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part A and B, Plenum Press.
- 3. Stereochemistry: Conformation and mechanism, P.S. Kalsi, New Age International, NewDelhi.
- 4. Stereochemistry of carbon compounds, E.L Eliel, S.H Wilen and L.N Manden, Wiley.
- 5. Stereochemistry of Organic Compounds- Principles and Applications, D. Nasipuri. NewInternational Publishers Ltd.
- 6. March"s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B.Smith, Jerry March, Wiley.
- 7. Advanced Organic Chemistry: Reactions and mechanism, B. Miller and R. Prasad, Pearson Education.
- 8. Advanced Organic Chemistry: Reaction mechanisms, R. Bruckner, Academic Press.
- 9. Understanding Organic Reaction Mechanisms, Adams Jacobs, Cambridge UniversityPress.
- 10. Writing Reaction Mechanism in organic chemistry, A. Miller, P.H. Solomons, AcademicPress.
- 11. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Nelson Thornes.
- 12. Advanced Organic Chemistry: Reactions and mechanism, L.G. Wade, Jr., Maya ShankarSingh, Pearson Education.
- 13. Mechanism in Organic Chemistry, Peter sykes, 6th edition onwards.
- 14. Modern Methods of Organic Synthesis, W. Carruthers and Iain Coldham, CambridgeUniversity Press.
- 15. Organic Synthesis, Jagdamba Singh, L.D.S. Yadav, Pragati

Prakashan. Organic Chemistry Practical

Course Description		
Semester	I	
Course Name	Analytical Chemistry	

Course Code	PSC1AC1
Eligibility for Course	T.Y.B.Sc (Chemistry)
Credit	4
Hours	60

Course Objectives

- 1. To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
- 2. To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment, and modern instrumentation.
- 3. To provide the students with sound preparation for requirement of modern industry and provide competency in basic academic research as well as a cohesive, clearly structured overview of Chemistry

Course Outcomes After successful completion of this course students will be able to

Sr.	COs	Bloom
No		Taxonomy
		Level (BLT)
CO1	Explain the concept of data domain, performance characteristics of	Understand
	an instrument/method, total quality management, quality standards	
	for laboratories, quality audits and quality reviews.	
CO2	Discover the applications of UV-Visible spectroscopy, IR	Apply
	spectroscopy, Differential scanning calorimetry.	
CO3	Identify the need of automation in chemical analysis, safety	Evaluate
	measures in laboratory, need of accreditation of laboratories and	
	GLP.	
CO4	Interpret the data based on calculations and statistical tests.	Evaluate

Unit	Course Description	
1.	1.1 Concepts of Analytical Chemistry: [5L]	
	1.1.1 Analytical perspective, Common analytical problems, terms involved in	
	analytical chemistry (analysis, determination, measurement, techniques, methods,	

procedures and protocol) 1.1.2 An overview of analytical methods, types of instrumental methods, instruments for analysis, data domains, electrical and non-electrical domains, detectors, transducers and sensors, 1.2 Calculations based on Chemical Principles: [5L] The following topics are to be covered in the form of numerical problems only. a. Concentration of a solution based on volume and mass units. b. Calculations of ppm, ppb and dilution of the solutions, concept of mmol. c. Stoichiometry of chemical reactions, concept of kg mol, limiting reactant, theoretical and practical yield. 1.3 Basic Statistical Tools: [5L] Types of errors – determinate and indeterminate errors, Significant figures and propagation of errors. Confidence limit, Test of significance – the F-test and t-test - One sample t-test. Independent, Paired sample t-test. The statistical Q-test for rejection of a result, statistics for small data sets, Errors in instrumental analysis: Calibration curves, line of regression, errors in slope and intercept. 2. **Quality in Analytical Chemistry:** 15 2.1 Quality Management System (QMS): [5L] Quality Management System: Quality management concepts and principles -Traceability, quality control, quality assurance, quality management and quality manual, calibration and test methods TQM in Chemical Industry: Applying Kaizen, Six Sigma approach and 5S to quality in industries. Quality audits and quality reviews, responsibility of laboratory staff for quality and problems. 2.2 Good Laboratory Practices: [4L] GLP Principles, Documentation of laboratory work, Preparation of Standard Operating Procedures (SOPs), Validation of methods, reporting documentation of results. 2.3. Accreditation of laboratories: [3L] International organization for standardization, National accreditation board for testing and calibration laboratories. Scope of accreditation. 2.4 Safety in Laboratories: [3L] Importance of Safety in Laboratories, classification of Personal Protection Equipment (PPE), Safety and health Standards: Indian Standards & codes for safety & health, OSHA standards, Types of Toxic Hazard (TH), Classification of Chemical Hazards and their control. **Optical Methods:** 3. 15 3.1 Recapitulation of basic concepts, Electromagnetic spectrum, Sources, Detectors, sample containers, Laser as a source of radiation, Fibre optics [3L] 3.2 Molecular Ultraviolet and Visible Spectroscopy [6L] 3.2.1 Derivation of Beer- Lambert's Law and its limitations, factors affecting molecular absorption, types of transitions [emphasis on charge transfer absorption], pH, temperature, solvent and effect of substituents. Applications of Ultraviolet and Visible spectroscopy: 1) On charge transfer absorption 2) Simultaneous spectroscopy 3) Derivative Spectroscopy 3.2.2 Dual spectrometry – Introduction, Principle, Instrumentation and

Applications

- 3.3 Infrared Absorption Spectroscopy [6L]
- 3.3.1 IR Spectrosopy: Principle, Instrumentation: Sources, Sample handling, Transducers,
- 3.3.2 FTIR Spectroscopy: Principle, instrumentation & its advantages.
- 3.3.3 Applications of IR spectroscopy: structure analysis of organic compounds, inorganic

Molecules e.g. Sulphato, Carbonato, Nitrato & metal chelates - Acetylacetanato Complexes.

Analysis of petroleum hydrocarbons, oil and grease contents by EPA method, Quantitative analysis of multi-component mixtures.

3.3.4 Introduction and basic principles of diffuse reflectance spectroscopy and its applications.

4. 4.1 Thermal Methods: [5 L]

15

- 4.1.1 Introduction, Recapitulation of types of thermal methods, comparison between TGA and DTA.
- 4.1.2 Differential Scanning Calorimetry- Principle, comparison of DTA and DSC, Instrumentation, Block diagram, Nature of DSC Curve, Factors affecting curves (sample size, sample shape, pressure).
- 4.1.3 Applications Heat of reaction, Specific heat, Safety screening, Polymers, liquid crystals, Percentage crystallinity, oxidative stability, Drug analysis, Magnetic transition. e. g. Analysis of Polyethylene for its crystallinity.
- 4.2 Automation in chemical analysis: [5 L]

Need for automation, Objectives of automation, an overview of automated instruments and instrumentation, process control analysis, flow injection analysis, discrete automated systems, automatic analysis based on multi-layered films, gas monitoring equipments, Automatic titrators.

4.3 Environmental Toxicology: [5]

Introduction to Environmental Toxicology, Concepts of Toxicology, Toxic substances in the environment, their sources and entry roots, Transport of toxicants by air and water; Transport through food chain-bio-transformation and bio-magnification. Analysis Methods

References

Unit I

- 1. Modern Analytical Chemistry by David Harvey, McGraw-Hill Higher Education
- 2. Principles of Instrumental Analysis Skoog, Holler and Nieman, 5th Edition, Ch. 1.
- 3. Fundamentals of Analytical Chemistry, By Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch, 9th Edition, 2004, Ch: 5.
- 4. Undergraduate Instrumental Analysis, 6th Edition, J W Robinson, Marcel Dekker, Ch:1. 5. ISO 9000 Quality Systems Handbook, Fourth Edition, David Hoyle. (Chapter: 3 & 4) (Free download).
- 5. 3000 solved problems in chemistry, Schaums Solved problem series, David E. Goldbers, McGraw Hill international Editions, Chapter 11,15,16,21,22

Unit II

- 1. Quality in the Analytical Laboratory, Elizabeth Pichard, Wiley India, Ch. 5, Ch. 6 & Ch. 7.
- 2. Quality Management, Donna C S Summers, Prentice-Hall of India, Ch:3.
- 3. Quality in Totality: A Manager"s Guide To TQM and ISO 9000, ParagDiwan, Deep & Deep Publications, 1st Edition, 2000.
- 4. Quality Control and Total Quality Management P.L. Jain-Tata McGraw-Hill (2006) Total Quality Management Bester field Pearson Education, Ch:5.
- 5. Industrial Hygiene and Chemical Safety, M H Fulekar, Ch:9, Ch:11 & Ch:15.
- 6. Safety and Hazards Management in Chemical Industries, M N Vyas, Atlantic Publisher, Ch:4, Ch:5 & Ch:19.
- 7. Staff, World Health Organization (2009) Handbook: Good Laboratory Practice (GLP) 13. OECD Principles of Good Laboratory Practice (as revised in 1997)". OECD Environmental Health and Safety Publications.OECD. 1. 1998.
- 8. Klimisch, HJ; Andreae, M; Tillmann, U (1997). "A systematic approach for evaluating the quality of experimental toxicological and eco-toxicological data". doi:10.1006/rtph.1996.1076. PMID 9056496.

Unit III

- 1. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th Edition, Harcourt Asia Publisher. Chapter 6, 7.
- 2. H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrumental Methods of Analysis,6 th Edition, CBS Publisher. Chapter 2.
- 3. R. D. Braun, Introduction to Instrumental Analysis, McGraw Hill Publisher. Chapter 8.
- 4. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5 th Edition, Harcourt Asia Publisher. Chapter 13, 14.
- 5. H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrumental Methods of Analysis,6 th Edition, CBS Publisher. Chapter 2.
- 6. R. D. Braun, Introduction to Instrumental Analysis, McGraw Hill Publisher. Chapter 5.
- 7. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5 th Edition, McGraw Hill Publisher, Chapter 3.
- 8. M. Ito, The effect of temperature on ultraviolet absorption spectra and its relation to hydrogen bonding, J. Mol. Spectrosc. 4 (1960) 106-124.
- 9. A. J. Somnessa, The effect of temperature on the visible absorption band of iodine inseveral solvents, Spectrochim. Acta. Part A: Molecular Spectroscopy, 33 (1977) 525-528.

- 10. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5 th Edition, Harcourt Asia Publisher. Chapter 16, 17.
- 11. R. D. Braun, Introduction to Instrumental Analysis, McGraw Hill Publisher. Chapter 12
- 12. Z. M. Khoshhesab (2012). Infrared Spectroscopy- Materials Science, Engineering and Technology. Prof. TheophanidesTheophile (Ed.). ISBN: 978-953- 51-0537- 4, InTech,(open access)

Unit IV

- 1. Introduction to instrumental methods of analysis by Robert D. Braun, Mc. Graw Hill (1987): Chapter 27
- 2. Thermal Analysis-theory and applications by R. T. Sane, Ghadge, Quest Publications
- 3. Instrumental methods of analysis, 7 th Edition, Willard, Merrit, Dean: Chapter 25
- 4. Instrumental Analysis, 5 th Edition, Skoog, Holler and Nieman: Chapter 31
- 5. Quantitative Chemical Analysis, 6 th Edition, Vogel: Chapter 12
- 6. Analytical Chemistry by Open Learning: Thermal Methods by James W. Dodd & Enneth H. Tonge
- 7. Instrumental methods of analysis, 7 th Edition, Willard, Merrit, Dean: Chapter 26
- 8. Instrumental Analysis, 5th Edition, Skoog, Holler and Nieman: Chapter 33
- 9. Introduction to instrumental methods of analysis by Robert D. Braun, Mc. GrawHill (1987): Chapter 28
- 10. Environmental toxicology Kees van Gestel, Vrije Universiteit, Amsterdam
- 11. Environmental Toxicology III , by V. Popov, Wessex Institute of Technology, UK; C.A. Brebbia, Wessex Institute of Technology, UK

Analytical Chemistry Practical

Course Description		
Semester	I	
Course Name	Analytical Chemistry	
Course Code	PSC1ACP	
Eligibility for Course	T. Y BSc (Chemistry)	
Credit	2	
Hours	30	

After successful completion of this course students will be able to

Sr.	COs	Bloom Taxonomy
No		Level (BLT)

CO1	Demonstrate the titration skills for the analysis of samples of	Apply
	a diverse variety	
CO2	Apply the statistical methods for data analysis	Apply
CO3	Analyze the measured data based on Chemical principles	Analyse
CO4	Measure the characteristics of ion exchange resins	Evaluate

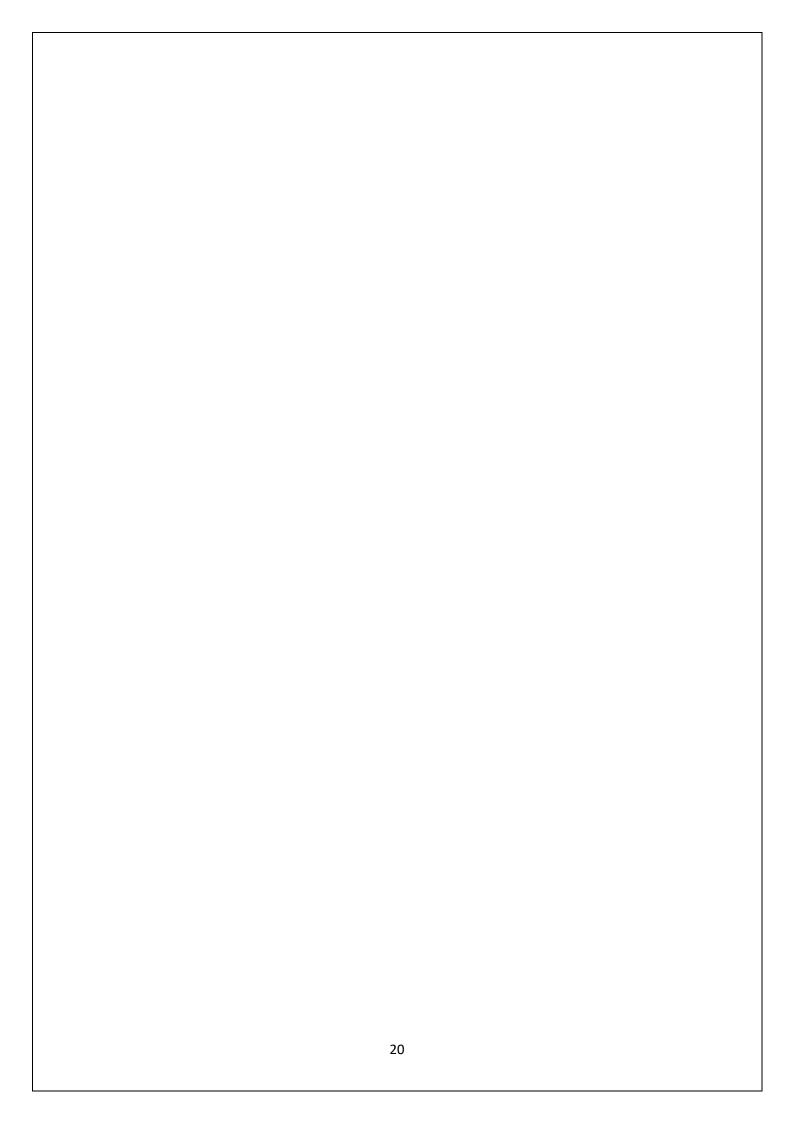
Unit	Course Description	Hrs
1.	To carry out assay of the sodium chloride injection by Volhard's	
	method.	
2.	a) Statistical method: Application of Q test, t test to the data	4
	obtained for calibration of 5 mL pipette.	
	b) Determine mean, deviation, Q value and t value using MS-	
	EXCEL software	
3.	To determine (a) the ion exchange capacity (b) exchange	4
	efficiency of the given cation exchange resin.	
4.	To determine amount of Cr(III) and Fe(II) individually in a	4
	mixture of the two by titration with EDTA.	
5.	To determine the breakthrough capacity of a cation exchange	4
	resin.	
6.	To determine the Mg (titrimetrically) and Al (gravimetrically)	4
	content of a Magnelium alloy by titration with EDTA.	
7.	To determine amount of Cu(II) present in the given solution	4
	containing a mixture of Cu(II) and Fe(II).	
8.	To determine number of nitro groups in the given compound	4
	using TiCl ₃ .	
9.	Separation of amino acids in a mixture by TLC using Ninhydrin	4
	(Demonstration)	

References:

- 1. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by A. I. Vogels, 3rd Ed. ELBS (1964)
- 2. Vogel's textbook of quantitative chemical analysis, Sixth Ed. Mendham, Denny, Barnes, Thomas, Pearson education
- 3. Standard methods of chemical analysis, F. J. Welcher
- 4. Standard Instrumental methods of Chemical Analysis, F. J. Welcher
- 5. W. W. Scott. "Standard methods of Chemical Analysis", Vol. I, Van Nostr and Company,Inc.,1939.
- 6. E.B.Sandell and H.Onishi, "Spectrophotometric Determination of Traces of Metals", Part-II, 4th Ed., A Wiley Interscience Publication, New York, 1978.

Course Description (Elective	-I)
Semester	I
Course Name	Inorganic Chemistry-I
Course Code	PSC1IC1
Eligibility for Course	T.Y.B. Sc.in Chemistry
Credit	2
Hours	30

Course Objectives:


- 1. To apply theories of bonding, hybridization, MOT for Polyatomic species.
- 2. To understand preparation, proporties and structures of higher boranes, carboranes, metalloboranes and metallocarboranes, metal carbonyls and halide clusters.
- 3. To understand all elements of symmetry, point group, symmetry classification, symmetry criterion of optical activity, symmetry restrictions on dipole moment.
- 4. To understand concepts of Groups, Sub-groups, Classes of Symmetry operations, Group Multiplication Tables. Abelian and non-Abelian point groups, Mulliken's notations for irreducible representations. Reduction of reducible representations using reduction formula.
- 5. To understand concept of band theory, Fermi level, K-Space and Brillouin Zones, Defects in solids.
- 6.To explain Preparative methods of inorganic solids & nano materials.
- 7.To explain Electron Paramagnetic Resonance Spectroscopy and its applications, spectral calculations using Orgel and Tanabe-Sugano diagram.
- 8. To determine of formation constants of metal complexes.

Course Outcomes

Sr.No.	After completing the course, Student will able to:	Bloom Taxonomy Level (BTL)
CO1	Explain theories of bonding, hybridization, resonance concept, MOT for diatomic species of first transition Series, Polyatomic species and Higher boranes, carboranes, metalloboranes and metallocarboranes, metal carbonyls and halide clusters.	Understand

CO2	Explain The concept of band theory, Fermi level, K-Space and	Understand
	Brillouin Zones. Structures of Compounds of the type: AB, AB2 etc.	
	and Preparative methods of inorganic solids & nano materials.	

Unit	Course Description	Hrs	СО	PSO	PO
			No.	No.	No.
1.	Chemical Bonding:	15h	CO1	PSO1	PO3
1.1	Recapitulation of hybridization Derivation of wave				
	functions for sp, sp2, sp3 orbitalhybridization types				
	considering only sigma bonding.				
1.2	Discussion of involvement of d orbitals in various				
	types of hybridizations. Concept ofresonance,				
	resonance energy derivation expected. Formal charge				
	with examples.				
1.3	Molecular Orbital Theory for Polyatomic species				
	considering σ bonding for SF6, CO2,B2H6, I3-				
	molecular species.				
1.4	Higher boranes, carboranes, metalloboranes and				
	metallocarboranes, metal carbonyls and halide clusters,				
_	compounds with metal-metal multiple bonds.	1	~~-		
2.	Molecular Symmetry and Group Theory:	15h	CO3	PSO1	PO5
2.1	Symmetry criterion of optical activity, symmetry				
	restrictions on dipole moment. Asystematic procedure				
	for symmetry classification of molecules.		1		
2.2	Concepts of Groups, Sub-groups, Classes of Symmetry				
	operations, Group MultiplicationTables. Abelian and				
2.2	non-Abelian point groups.				
2.3	Representation of Groups: Matrix representation of				
	symmetry operations, reducible and irreducible				
	representations. The Great Orthogonality Theorem and				
	its application in construction of character tables for				
	point groups C2v, C3v and D2h, structure of character tables.				
	tables.				
2.4	Applications of Group Theory				
2.4	(a) Symmetry adapted linear combinations (SALC),				
	symmetry aspects of MO theory, sigma bonding in				
	ABn (Ammonia, CH4) molecule.				
	(b) Determination of symmetry species for translations				
	and rotations.				
	(c) Mulliken's notations for irreducible representations.				
	(d) Reduction of reducible representations using				
	reduction formula.				
	(e) Group-subgroup relationships.				
	(f) Descent and ascent in symmetry correlation				
	diagrams showing relationship between different				
	groups.				

Course Description (Elective-	II)
Semester	I
Course Name	Inorganic Chemistry-II
Course Code	PSC1IC1
Eligibility for Course	T.Y.B. Sc.in Chemistry
Credit	2
Hours	30

Course Outcomes

Sr.No.	After completing the course, Student will able to:	Bloom Taxonomy Level (BTL)
CO1	Construct Group Multiplication Tables, Character tables using concept of Molecular Symmetry and Group Theory.	Apply
CO1	Determine electronic parameters such as Δ, B, C, Nephelauxetic ratio, formation constants of metal complexes and Characterize coordination compounds using techniques like thermal studies, Conductivity measurements, electronic spectral and magnetic measurements, IR, NMR and ESR spectroscopic	Evaluate

Unit	Course Description	Hrs
3.	Materials Chemistry and Nanomaterials:	15h
3.1	Solid State Chemistry	
3.1.1	Electronic structure of solids and band theory, Fermi level, K Space and Brillouin Zones.	
3.1.2	Crystal Defects and non-stoichiometry: Classification of Defects: subatomic, atomic and lattice defects in solids; Thermodynamics of vacancy in metals; Thermodynamics of Schottky defects in ionic solids; Thermodynamics of Frenkel defects in silver halides; Calculation of number of defects and average energy required for defect.	
3.1.3	Methods of preparation for inorganic solids: sol- gel method (applications in Biosensors), microwave synthesis (discussion on principles, examples, merits and demerits are expected)	
3.2	Nanomaterials	
3.2.1	Preparative methods: Chemical methods, Microwave, Langmuir Blodgett(L-B) method, Biological methods: Synthesis using microorganisms	
3.2.2	Applications in the field of semiconductors, solar cells	
4.	Characterisation of Coordination compounds	15h
4.1	Electron Paramagnetic Resonance Spectroscopy (EPR):	

	i) Theory and Instrumentation of EPR in brief.	
	ii) Spin Hamiltonian, Isotropic and anisotropic EPR spectra, Magic	
	Pentagon rule.	
	iii) Applications of EPR spectroscopy: Structural determination of	
	Inorganic complexes	
4.2	Spectral calculations using Orgel and Tanabe-Sugano diagram, calculation of electronic parameters such as Δ , B, C, Nephelauxetic ratio.	
4.3	Determination of formation constants of metal complexes (Overall and Stepwise): Comparative studies of Potentiometric and spectral methods.	

References

Unit I

- **1.** B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2013-2014.
- **2.** W. W. Porterfield, Inorganic Chemistry-A Unified Approach, 2nd Ed., Academic Press, 1993.
- 3. B. W. Pfennig, Principles of Inorganic Chemistry, Wiley, 2015.
- **4.** C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson Education Limited, 2ndEdition 2005.
- **5.** J. Huheey, F. A. Keiter and R. I. Keiter, Inorganic Chemistry–Principles of Structure and Reactivity, 4th Ed., Harper Collins, 1993.
- **6.** P. J. Durrant and B. Durrant, Introduction to Advanced Inorganic Chemistry, OxfordUniversity Press, 1967.
- **7.** R. L. Dekock and H.B.Gray, Chemical Structure and Bonding, The Benjamin CummingsPublishing Company, 1989.
- **8.** G. Miessler and D. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education, 2004.
- 9. R. Sarkar, General and Inorganic Chemistry, Books & Allied (P) Ltd., 2001.
- **10.** C. M. Day and J. Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt.Ltd., 1985.
- 11. J. N. Murrell, S. F. A. Kettle and J. M. Tedder, The Chemical Bond, Wiley, 1978.
- **12.** G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Inc., 1997.

Unit II

- 1. F. A. Cotton, Chemical Applications of Group Theory, 2nd Edition, Wiley Eastern Ltd.,1989.
- 2. H. H. Jaffe and M. Orchin, Symmetry in Chemistry, John Wiley & Sons, New York, 1996.
- 3. R. L. Carter, Molecular Symmetry and Group Theory, John Wiley & Sons, New York,1998.
- 4. K. V. Reddy. Symmetry and Spectroscopy of Molecules, 2nd Edition, New Age

International Publishers, New Delhi, 2009.

- 5. A. SalahuddinKunju and G. Krishnan, Group Theory and its Applications in Chemistry, PHI Learning, 2012.
- 6. P. K. Bhattacharya, Group Theory and its Chemical Applications, Himalaya PublishingHouse. 2014.
- 7. S. Swarnalakshmi, T. Saroja and R. M. Ezhilarasi, A Simple Approach to Group Theory in Chemistry, Universities Press, 2008.

Unit III

- 1. Solid State Chemistry Introduction, Lesley E. Smart, Elaine A. Moore, ISBN 0-203-49635-3, Taylor & Francis Group, LLC.
- 2. Nanomaterials&Nanochemistry, 2007, Catherine Brechignac, Philippe Houdy, Marcel Lahmani, ISBN 978-3-540-72992-1 Springer Berlin Heidelberg New York.
- 3. Nanomaterials Chemistry, Recent Developments and New Directions C.N.R. Rao, A. Muller, and A.K. Cheetham, ISBN 978-3-527-31664-9, 2007 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim.
- 4. Nano-Surface Chemistry, 2001, Morton Rosoff, ISBN: 0-8247-0254-9, Marcel Dekker Inc.New York.
- 5. The Chemistry of Nanomaterials, CNR Rao, Muller Cheetham, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
- 6. Semiconductor Nanomaterials, Challa S.S.R. Kumar, ISBN: 978-3-527-32166-7, WILEY- VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

Unit IV

- 1. J. E. Huheey, E. A. Keiter and R. L. Keiter; Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education, 2006.
- 2. D. Banerjea ,Coordination Chemistry
- 3. Geary Coordination reviews
- 4. P.W. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong; Shriver & Atkins: Inorganic Chemistry, 4th ed. Oxford University Press, 2006.
- 5. F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann; Advanced Inorganic Chemistry, 6th ed. Wiley, 1999,
- 6. B. Douglas, D. McDaniel and J. Alexander. Concepts and Models of Inorganic Chemistry(3rd edn.), John Wiley & Sons (1994).
- 7. Physical Methods in Chemistry, R. S. Drago (2nd Edition) (1977).

Course Description		
Semester	I	
Course Name	Inorganic Chemistry Practical	
Course Code	PSC1IC1	
Eligibility for Course	T.Y.B.Sc.in Chemistry	

Credit	2
Hours	30

Sr. No.	After completing the course, Students will be able to:	Bloom Taxonomy Level (BTL)
CO1	Prepare various inorganic complexes such as Bis-(tetramethylammonium) tetrachloroCuprate (II) (Me4 N) 2[CuCl4],Tetramminemonocarbanato Cobalt (III) Nitrate, Bis (ethylenediammine) Copper (II) Sulphate, Hydroniumdichlorobis(dimethylglyoximato) etc.	Understand
CO2	Determine the electrolytic nature of inorganic compounds	Apply
CO3	Apply Slope intercept method for determination of equilibrium constants for Fe ⁺³ / SCN- system.	Apply
CO4	Analyze the inorganic complex for percentage of metal and ligand.	Analyse

Inorganic Preparations (Synthesis and Characterization)

- 1) Bis-(tetramethylammonium) tetrachloroCuprate (II) (Me4 N) 2[CuCl4]
- 2) Tetramminemonocarbanato Cobalt (III) Nitrate [Co(NH3)4CO3]NO3
- 3) Bis (ethylenediammine) Copper (II) Sulphate [Cu(en)2]SO4
- 4) Hydronium dichlorobis(dimethylglyoximato) Cobaltate(III) H[Co(dmgH)2Cl2]

Instrumentation

- 1) Determination of equilibrium constant by Slope intercept method for Fe+3/ SCN-system
- 2) Determination of Electrolytic nature of inorganic compounds by Conductancemeasurement.

Reference:

1. Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur& Sons Pvt Ltd

The Synthesis and Characterization of Inorganic Compounds by William L. Jolly 3. Inorganic Chemistry Practical Under UGC Syllabus for M.Sc. in all India Universities By: Dr Deepak Pant

Research Methodology

Course Description	Minor
Semester	I
Course Name	Research Methodology
Course Code	PSC1RM1
Eligibility for the Course	B.Sc. Chemistry
Credit	4
Hours	60

Course Outcomes

Sr. No.	Course Outcomes	Bloom Taxonomy Level (BTL)
CO1	Explain the importance of different types of print and digital resources for gap analysis and data collection.	Understand
CO2	Design/propose methodologies preferably with green and safe approach to conduct research	Create
CO3	Anayze scientific data by statistical and graphical methods.	Analyse
CO4	Apply skills of chemical safety & ethical handling of chemicals	Apply

Unit	Course Description	
1	Research and Literature Survey	
	Scientific Research: (5L)	15
	Research: Definition, types, Need of research. Identification of the problem,	
	formulating the objectives, Hypotheses, Research Methods and Methodology	
	Selecting & defining Research problem, Research Process, Research Design:	
	preparing Research design (experimental or otherwise), Actual investigation,	
	Data analysis and interpretation.	
	Literature survey: (5L)	
	Need for Literature Survey, References,	
	Sources of literature: Primary, Secondary and Tertiary sources, Journals:	
	Peer-reviewed, indexed, UGC-care listed, predatory, fake journals	
	Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance	
	Index, Author Index, Formula Index, and other Indices with examples	
	Digital Web sources: [5L]	
	E-journals, Journal access, TOC alerts, Hot articles, Citation Index, Impact	
	factor, H-index, E-consortium, UGC infonet, E-books, Shodhganga,	
	Researchgate, Internet discussion groups and communities, Blogs, preprint	
	servers, Search engines, Scirus, Google Scholar, ChemIndustry, Wiki-	

	databases, ChemSpider, Science Direct, SciFinder, Scopus.	
2	Data Analysis	
	The Investigative Approach: Making and recording Measurements, SI units and their use, Scientific methods and design of experiments. Analysis and Presentation of Data: Descriptive statistics, choosing and using statistical tests, Chemometrics, Analysis of Variance (ANOVA), SPSS, Correlation and regression, curve fitting, fitting of linear equations, simple linear cases, weighted linear case, analysis of residuals, general polynomial fitting, linearizing transformations, exponential function fit, r and its abuse, basic aspects of multiple linear regression analysis. (15L)	15
3	Methods of Scientific Research and Writing	
4	Scientific papers: Reporting practical and project work, writing literature surveys and reviews, organizing a poster display, giving an oral presentation. Writing Scientific Papers: Justification for scientific contributions, bibliography, description of methods, conclusions, the need for illustration, style, publications of scientific work, writing ethics, avoiding plagiarism (15L) Chemical Safety & Ethical Handling of Chemicals	15
4	Safe working procedure and protective environment, protective apparel,	15
	emergency procedure, first aid, laboratory ventilation, safe storage and use of hazardous chemicals, procedure for working with substances that pose hazards, flammable or explosive hazards, procedures for working with gases at pressures above or below atmospheric pressure, safe storage and disposal of waste chemicals, recovery, recycling and reuse of laboratory chemicals, procedure for laboratory disposal of explosives, identification, verification and segregation of laboratory waste, disposal of chemicals in the sanitary sewer system, incineration and transportation of hazardous chemicals. (15L)	

REFERENCES:

- 1. Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J., & Jones, A., (2011), *Practical skills in Chemistry*, 2nd Ed., Prentice Hall, Harlow.
- 2. Hibbert, D. B. & Gooding, J. J. (2006) *Data Analysis for Chemistry* OxfordUniversity Press.
- 3. Topping, J., (1984) Errors of Observation and their Treatment 4th Ed., Chapman Hill London.
- 4. Harris, D. C. (2007) *Quantative Chemical Analysis* 6th Ed., Freeman Chapters 3-5
- 5. Levie, R. De. (2001) *How to use Excel in Analytical Chemistry and in generalscientific data analysis* Cambridge University Press.
- 6. Chemical Safety matters IUPAC-IPCS, (1992) Cambridge University Press.

SEMESTER-II

Course Description		
Semester	II	
Course Name	Physical Chemistry	
Course Code	PSC2PC2	
Eligibility for Course	T. Y BSc (Chemistry)	
Credit	4	
Hours	60	

Course Outcomes

Sr.	COs	Bloom
No		Taxonomy Level (BLT)
CO1	Explain Bioenergetics, Real solutions and Fugacity of real gases also show graphical representations of BET isotherms	Apply
CO2	Prove expressions for the total wave function for 1s,2s, 2p and 3d orbitals of hydrogen and aapplication of the Schrödinger equation to two electron system	Evaluate
CO3	Explain terms involved in Chemical Kinetics and Molecular Reaction Dynamics. Elementary Reactions in Solution, Kinetics of reactions catalysed by enzymes -Michaelis-Menten analysis, Lineweaver- Burk and Eadie Analyses, Inhibition of Enzyme action.	Apply, Evaluate
CO4	Apply Photochemistry to solve NET, SET GATE Problems.	Apply

Unit	Course Description	Hrs
1.	Chemical Thermodynamics II	
	1.1. Fugacity of real gases, Determination of fugacity of real gases using	15
	graphical method and from equation of state. Equilibrium constant for real	
	gases in terms of fugacity. Gibbs energy of mixing, entropy and enthalpy	
	of mixing.	
	1.2. Real solutions: Chemical potential in non ideal solutions excess	
	functions of non ideal solutions calculation of partial molar volume and	
	partial molar enthalpy, Gibbs Duhem Margules equation.	
	1.3. Thermodynamics of surfaces, Pressure difference across curved	

	surface (Laplace equation), vapour pressure of droplets (Kelvin equation),	
	Gibbs adsorption isotherm, BET isotherm (derivations expected).	
	1.4. Bioenergetics: standard free energy change in biochemical reactions,	
	exergonic, endergonic. Hydrolysis of ATP, synthesis of ATP from ADP.	
2.	Quantum Chemistry	
	2.1. Rigid rotor, spherical coordinates Schrödinger wave equation in spherical coordinates, separation of the variables, the phi equation, wavefunction, quantum number, the theta equation, wave function, quantization of rotational energy, spherical harmonics. 2.2. Hydrogen atom, the two particle problem, separation of the energy as translational and potential, separation of variables, the R the q * and the f equations, solution of the equation, introduction of the four quantum numbers and their interdependence on the basis of the solutions of the three equations, total wave function, expression for the energy, probability density function, distances and energies in atomic units, radial and angular plots., points of maximum probability, expressions for the total wave function for 1s,2s, 2p and 3d orbitals of hydrogen. expression for the energy, probability density function, distances and energies in atomic units, radial and angular plots., points of maximum probability, expressions for the total wave function for 1s,2s, 2p and 3d orbitals of hydrogen. 2.3. Application of the Schrödinger equation to two electron system, limitations of the equation, need for the approximate solutions, methods of obtaining the approximate solution of the Schrödinger wave equation. 2.4. Hückel Molecular Orbitals theory for ethylene, 1,3-butadiene and benzene. (Derivation expected)	15
3.	Chemical Kinetics and Molecular Reaction Dynamics	
	 3.1. Elementary Reactions in Solution:- Solvent Effects on reaction rates, Reactions between ions- influence of solvent Dielectric constant, influence of ionic strength, Linear free energy relationships Enzyme action 3.2. Kinetics of reactions catalysed by enzymes -Michaelis-Menten analysis, Lineweaver-Burk and Eadie Analyses. 3.3. Inhibition of Enzyme action: Competitive, Non competitive and Uncompetitive Inhibition. Effect of pH, Enzyme activation by metal ions, Regulatory enzymes. 3.4. Kinetics of reactions in the Solid State:- Factors affecting reactions in solids Rate laws for reactions in solid: The parabolic rate law, The first order rate Law, the contracting sphere rate law, Contracting area rate law, some examples of kinetic studies. 	15
4.	Photochemistry	
	4.1: Absorption of light, laws of photochemistry, electronic structure of molecules, molecular orbital, electronically excited singlet states, designation based on multiplicity rule, construction of Jablonski diagram, electronic transition, Frank Condon principle, selection rules, intensity of absorption bands, nature of electronic spectra and primary process, photo-	15

dissociation, pre-dissociation,

4.2 Photo physical phenomena:

physical pathways of excited molecular system (radiative and non-radiative), prompt fluorescence, delayed fluorescence, and phosphorescence, fluorescence quenching: concentration quenching, collisional quenching, quenching by excimer and exciplex emission, fluorescence resonance energy transfer between photo-excited donor and acceptor systems.

4.3. Stern-Volmer relation, critical energy transfer distances, energy transfer

efficiency, examples and applications in chemical analysis. Photochemical reactions, photo-oxidation, photoreduction, photo-dimerization, photoisomerization and photosensitized reactions. Photochemistry of environment: Greenhouse effect.

References:

- 1. Peter Atkins and Julio de Paula, Atkin"s Physical Chemistry, 7th Edn., Oxford University Press, 2002.
- 2. K.J. Laidler and J.H. Meiser, Physical Chemistry, 2nd Ed., CBS Publishers and Distributors, New Delhi, 1999.
- 3. Robert J. Silby and Robert A. Alberty, Physical Chemistry, 3rd Edn., John Wiley and Sons (Asia) Pte.Ltd., 2002.
- 4. Ira R. Levine, Physical Chemistry, 5th Edn., Tata McGraw-Hill New Delhi, 2002.
- 5. G.W. Castellan, Physical Chemistry, 3rd Edn., Narosa Publishing House, New Delhi, 1983.
- 6. S. Glasstone, Text Book of Physical Chemistry, 2nd Edn., McMillan and Co. Ltd., London, 1962.
- 7. Principles of Chemical Kinetics, 2nd Ed., James E. House, ELSEVIER, 2007.
- 8. B.K. Sen, Quantum Chemistry including Spectroscopy, Kalyani Publishers, 2003.
- 9. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, 1994.
- 10. R.K. Prasad, Quantum Chemistry, 2nd Edn., New Age International Publishers, 2000.
- 11. S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.
- 12. W.G. Davis, Introduction to Chemical Thermodynamics A Non Calculus Approach, Saunders, Philadelphia, 19772.

- 13. Peter A. Rock, Chemical Thermodynamics, University Science Books, Oxford University Press, 1983.
- 14. Ira N. Levine, Quantum Chemistry, 5th Edn., Pearson Education (Singapore) Pte.Ltd., Indian Branch, New Delhi, 2000.
- 15. Thomas Engel and Philip Reid, Physical Chemistry, 3rd Edn., Pearson Education Limited 2013.
- 16. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1st Edn., 1992.
- 17. Solid State Chemistry [An Introduction], 3rd Ed., Lesley E. Smart & Elaine A. Moore, Taylor & Francis, 2010.
- 18. The Physics and "Chemistry of Solids, Stephen Elliott, Willey India, 2010
- 19. Principles of the Solid State, H.V. Keer, New Age International Publishers, 2011.
- 20. Solid State Chemistry, D.K. Chakrabarty, New Age International Publishers, 1996.
- 21. Principles of physical Chemistry, Marrown and Prutton 5th edition
- 22. Essentials of Physical Chemistry ,ArunBahl, B. S Bahl, G. D.Tulli , S Chand and Co. Ltd , 2012 Edition.
- 23. Introduction of Solids L.V Azaroff, Tata McGraw Hill.
- 24. A Text book of physical Chemistry; Applications of thermodynamics vol III, Mac Millan Publishers India Ltd ,2011
- 25. New directions in solid state Chemistry, C.N.R. Rao and J Gopalkrishnan , Cambridge University Press.

Physical Chemistry Practical

Course Description	
Semester	II
Course Name	Physical Chemistry Practical
Course Code	PSC2PCP
Eligibility for Course	T.Y. B. Sc. (Chemistry)
Credit	2
Hours	30

Sr. No	COs Bloom		
		Taxonomy	
		Level (BLT)	
CO1	Know principles of different instruments like	Understand	
	Potentiometry, Conductometry, pH Metry and colorimeter		
CO2	Make use of graphical representation to identify Shape of	Apply	
	Orbitals.		

Sr.	Course Description	Hrs
No.		
1	Polar plots of atomic orbitals such as 1s, 2p _x & 3d _z ² orbitals by using angular part of hydrogen atom wave functions.	4
2	To study the influence of ionic strength on the base catalysed hydrolysis of ethyl acetate.	4
3	To study phase diagram of three component system water – chloroform /toluene - acetic acid.	4
4	To determine the rate constant of decomposition reaction of diacetone alcohol by dilatometric method.	4
5	Graph Plotting of mathematical functions –linear, exponential and trigonometry and identify whether functions are acceptable or non-acceptable?	4
6	To determine the formula of silver ammonia complex by potentiometric method. Determination of binary mixture of halides. (New expt.)	4
7	To determine CMC of sodium Lauryl Sulphate from measurement of conductivities at different concentrations.	4
8	To determine Hammette constant of m- and p- amino benzoic acid/nitro benzoic acid by pH measurement.	4
9	To determine the Michaelis – Menten's constant value (Km) of the enzyme Beta Amylase spectrophotometrically.	

References

1. Practical Physical Chemistry, B. Viswanathan and P.S. Raghavan, Viva Books Private Limited, 2005.

- 2. Practical Physical Chemistry, A.M. James and F.E. Prichard, 3rd Edn., Longman Group Ltd., 1974.
- 3. Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age International Publishers, 2001.

Course Description		
Semester	II	
Course Name	Organic Chemistry	
Course Code	PSC2OC2	
Eligibility for Course	T. Y BSc (Chemistry)	
Credit	2	
Hours	60	

Course Outcomes

Sr No.	COs	Bloom Taxonomy Level (BLT)
CO1	Explain the Generation of carbanion, enolate, enamine with their alkylation & acylation reaction and name reactions with their mechanism.	Understand
CO2	Illustrate mechanism, stereochemistry, applications and importance of name reactions and rearrangements.	Understand
CO3	Explain the role of reagents in organic synthesis.	Analyse
CO4	Interpret the structure of organic compounds using combined of spectral techniques.	create

Unit	Course Description	Hrs
1	1.1. Alkylation of Nucleophilic Carbon Intermediates:	15
	1.1.1. Generation of carbanion, kinetic and thermodynamic enolate formation,	
	Regioselectivity in enolate formation, alkylation of enolates. 1.1.2. Generation	
	and alkylation of dianion, medium effects in the alkylation of enolates, oxygen	
	versus carbon as the site of alkylation. 1.1.3. Alkylation of aldehydes, ketones,	
	esters. 1.1.4. Nitrogen analogs of enols and enolates- Enamines and Imines	
	anions, alkylation of enamines and imines. 1.1.5. Alkylation of carbon	
	nucleophiles by conjugate addition (Michael reaction).	
	1.2. Reaction of carbon nucleophiles with carbonyl groups:	
	1.2.1. Mechanism of Acid and base catalyzed Aldol condensation, Mixed	
	Aldol condensation with aromatic aldehydes, regiochemistry in mixed reactions	
	of aliphatic aldehydes and ketones, intramolecular Aldol reaction and Robinson	
	annulation. 1.2.2. Addition reactions with amines and iminium ions; Mannich	
	reaction. 1.2.3. Amine catalyzed condensation reaction: Knoevenagel reaction.	
	1.2.4. Acylation of carbanions. Asymmetric methodology with enolates and	

	Enamines	
2	Mechanisms, stereochemistry (if applicable) and applications of the following: 2.1. Reactions: Baylis-Hilman reaction, McMurry Coupling, Corey-Fuchs reaction, Nef reaction, Passerini reaction. 2.2. Concerted rearrangements: Hofmann, Curtius, Lossen, Schmidt, Wolff, Bamberger Rearrangements. 2.3. Cationic rearrangements: Tiffeneau-Demjanov, Pummerer, Dienone-phenol, Rupe, Wagner-Meerwein. 2.4. Anionic rearrangements: Brook, Neber, Von Richter, Wittig, Benzylic acid Rearrangements, Payne.	15
3	 3.1 Elimination Reactions: E1,E2 E1CB, Stereochemistry of elimination, elimination Vs Substitution, Anti and Syn Elimination. Dehydrohalogenation, Dehalogenation, Dehydration, Hoffmann and Saytzeff elimination, Pyrolytic elimination. 3.2 Organometallic Chemistry Organolithium, Organomagnesium, Organozinc, Organocupper, 3.3 Introduction to Molecular Orbital Theory for Organic Chemistry: Molecular orbitals: Formation of σ- and π-MOs by using LCAO method. Formation of π MOs of ethylene, butadiene, 1, 3, 5-hexatriene, allylcation, anion and radical. Concept of nodal planes and energies of π-MOs 	15
4	4.1. Proton magnetic resonance spectroscopy: Chemical and magnetic equivalence, Chemical shift values and correlation for protons bonded to carbon and other nuclei as in alcohols, phenols, enols, carboxylic acids, amines, amides. Spin-spin coupling, Coupling constant (J), Factors affecting J, geminal, vicinal and long range coupling (allylic and aromatic). First order spectra. 4.2. 13C NMR spectroscopy: Theory and comparison with proton NMR, proton coupled and decoupled spectra, off-resonance decoupling. Factors influencing carbon shifts, correlation of chemical shifts of aliphatic, olefin, alkyne, aromatic and carbonyl carbons. 4.3. Mass spectrometry: Determination of molecular formula of organic compounds based on isotopic abundance and HRMS. Fragmentation pattern in various classes of organic compounds (including compounds containing hetero atoms), McLafferty rearrangement, Retro-Diels Alder reaction. 4.4. Structure determination involving individual or combined use of the above spectral techniques. 4.5. Applications of UV and IR spectroscopy: (8 L) 3.2.1. Ultraviolet spectroscopy: Recapitulation, UV spectra of dienes, conjugated polyenes (cyclic and acyclic), carbonyl and unsaturated carbonyl compounds, substituted aromatic compounds. Factors affecting the position and intensity of UV bands – effect of conjugation, steric factor, pH, and solvent polarity. Calculation of absorption maxima for above classes of compounds by Woodward-Fieser rules (using Woodward-Fieser tables for values for substituents). 4.6. Infrared spectroscopy: Fundamental, overtone and combination bands, vibrational coupling, factors affecting vibrational frequency (atomic weight, conjugation, ring size, solvent and hydrogen bonding). Characteristic vibrational frequencies for alkanes,	15

compounds. Detailed study of vibrational frequencies of carbonyl compounds, aldehydes, ketones, esters, amides, acids, acid halides, anhydrides, lactones, lactams and conjugated carbonyl compounds.

Organic Chemistry Practical

Course Description			
Semester	II		
Course Name	Organic Chemistry		
Course Code	PSC2OCP		
Eligibility for Course	T.Y.B.Sc (Chemistry)		
Credit	2		
Hours	30		

Sr. No	COs	Bloom
		Taxonomy Level (BLT)
CO1	Identify the chemical type of components present in a binary mixture of an organic compound.	Apply
CO2	Apply skills in the separation and qualitative analysis of organic compounds of binary mixtures by microscale technique.	Apply
CO3	Make use of crystallization, sublimation and distillation for purification of the organic compounds.	Apply
CO4	Demonstrate the practical aspects in the preparation of the organic compounds derivatives.	Understand

Sr.	Course Description	Hrs	CO	PSO	PO
No.			No.	No.	No.
1	Separation of Binary mixture using micro-scale technique 1. Separation of binary mixture using physical and chemical methods. 2. Characterization of one of the components with the help of chemical analysis and confirmation of the structure with the help of derivative preparation and its physical constant. 3. Purification and determination of mass and physical constant of the second component. The following types are expected: (i) Water soluble/water insoluble solid and water insoluble solid, (ii) Non-volatile liquid-Non-volatile liquid (chemical separation) (iii) Water-insoluble solid-Non-volatile liquid.	30	1-4	1-4	9-11

- 1. Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford UniversityPress.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part A, page no. 713-769, and B, Plenum Press.
- 3. March"s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley.
- 4. Organic Chemistry, R.T. Morrison, R.N. Boyd and S.K. Bhattacharjee, Pearson Publication (7th Edition)
- 5. Advanced Organic Chemistry: Reactions and mechanism, B. Miller and R. Prasad, PearsonEducation.
- 6. Advanced Organic Chemistry: Reaction mechanisms, R. Bruckner, Academic Press.
- 7. Understanding Organic Reaction Mechanisms, Adams Jacobs, Cambridge University Press.
- 8. Writing Reaction Mechanism in organic chemistry, A. Miller, P.H. Solomons, Academic Press.
- 9. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Nelson Thornes.
- 10. Advanced Organic Chemistry: Reactions and mechanism, L.G. Wade, Jr., Maya Shankar Singh, Pearson Education.
- 11. Mechanism in Organic Chemistry, Peter Sykes, 6th
- 12. Molecular Orbital and Organic chemical reactions, Ian Fleming Reference Edition, Wiley
- 13. Introduction to Spectroscopy, Donald L. Pavia, Gary M. Lampman, George S. Kriz, Thomson Brooks.
- 14. Spectrometric Identification of Organic Compounds, R. Silverstein, G.C Bassler and T.C.Morrill, John Wiley and Sons.
- 15. Organic Spectroscopy, William Kemp, W.H. Freeman & Company.
- 16. Organic Spectroscopy-Principles and Applications, Jagmohan, Narosa Publication.
- 17. Organic Spectroscopy, V.R. Dani, Tata McGraw Hill Publishing Co.
- 18. Spectroscopy of Organic Compounds, P.S. Kalsi, New Age International Ltd.
- 19. Organic Reaction Mechanisms, V.K. Ahluwalia, R.K. Parasher, Alpha

ScienceInternational, 2011.

- 20. Reactions, Rearrangements and Reagents by S. N. Sanyal
- 21. Name Reactions, Jie Jack Li, Springer
- 22. Name Reactions and Reagents in Organic Synthesis, Bradford P. Mundy,
- M.G. Ellerd, and F.G. Favaloro, John Wiley & Sons.

Course Description			
Semester	II		
Course Name	Analytical Chemistry		
Course Code	PSC2AC1		
Eligibility for Course	T.Y.B.Sc (Chemistry)		
Credit	4		
Hours	60		

Course Outcomes

Sr.	COs	Bloom
No		Taxonomy
110		Level (BLT)
CO1	Translate the theoretical principles of advanced separation	Understand
	techniques, spectroscopic techniques, radioanalytical techniques,	
	electroanalytical techniques into applications.	
CO2	Explain the working principles of surface analytical techniques	Understand
	such as SEM, STM, TEM, ESCA, Auger spectroscopy and ICP-	
	AES	
CO3	Compare the different ion sources and mass analyzers in mass	Analyze
	spectroscopy	
CO4	Determine the electrical quantities such as charge, current, potential	Evaluate
	using Electroanalytical methods	

Unit	Course Description	Hrs
1.	Chromatography	
	1.1 Recapitulation of basic concepts in chromatography: Classification of chromatographic methods, requirements of an ideal detector, types of detectors in LC and GC, comparative account of detectors with reference to their applications (LC and GC respectively), qualitative and quantitative analysis.[2 L]	15

	1.2 Concept of plate and rate theories in chromatography: efficiency, resolution, selectivity and separation capability. Van Deemter equation and broadening of chromatographic peaks. Optimization of chromatographic conditions.[5 L]	
	1.3 Gas Chromatography: Instrumentation of GC with special reference to sample injection systems – split/splitless, column types, solid/ liquid stationary phases, column switching techniques, temperature programming,	
	Thermionic and mass spectrometric detector, Applications. [3 L]	
	1.4 High Performance Liquid Chromatography (HPLC): Normal phase and	
	reversed phase with special reference to types of commercially available columns (Use of C8 and C18 columns). Diode array type and fluorescence	
	detector, Applications of HPLC. Chiral and ion chromatography. [5 L]	
2.	X-ray spectroscopy:	
	principle, instrumentation and applications of X-ray fluorescence, absorption and diffraction spectroscopy. [4 L] 2.2 Mass spectrometry: recapitulation, instrumentation, ion sources for molecular studies, electron impact, field ionization, field absorption,	15
	chemical ionization and fast atom bombardment sources. Mass analyzers: Quadrupole, time of flight and ion trap. Applications. [6 L] 2.3 Radioanalytical Methods – recapitulation, isotope dilution method, introduction, principle, single dilution method, double dilution method and applications. [5 L]	
3.	Surface Analytical Techniques	
	Introduction, Types of surface measurements: Photon probe technique, electron probe technique, Ion probe technique, Scanning probe microscopy 3.2 Electron probe techniques: 3.1.1 Scanning Electron Microscopy (SEM): Principle, Instrumentation and Application 3.1.2 Electron Spectroscopy (ESCA and Auger): Principle, instrumentation and Application 3.2 Atomic Spectroscopy [6 L] 3.2.1 Recapitulation: Flame AAS and furnace AAS Interferences - chemical and spectral, evaluation methods in AAS, qualitative and quantitative applications 3.2.2 AES: Principle of AES, Interferences Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES) – Introduction, Principle, Instrumentation, applications 3.2.3 Applications of AAS and AES in environmental analysis	15
4.	Electroanalytical Methods	
	(Numericals are Expected) 4.1 Ion selective potentiometry and Polarography: [10 L] Ion selective electrodes and their applications (solid state, precipitate,	15
	liquid –liquid, enzyme and gas sensing electrodes), ion selective field effect transistors, biocatalytic membrane electrodes and enzyme based biosensors. Polarography: Ilkovic equation, derivation starting with Cottrell equation, effect of complex formation on the polarographic waves.	

- 4.2 Electrogravimetry: Introduction, principle, instrumentation, factors affecting the nature of the deposit, applications.[3 L]
- 4.3 Coulometry: Introduction, principle, instrumentation, coulometry at controlled potential and controlled current [2 L]

References:

Unit I

- 1. Instrumental Analysis, Skoog, Holler & Drouch
- 2 HPLC Practical and Industrial Applications, 2 nd Ed., Joel K. Swadesh, CRC Press Unit II 1.Essentials of Nuclear Chemistry, H J Arnikar, New Age Publishers (2005) 2. Fundamentals of Radiochemistry D. D. Sood, A. V. R. Reddy and N. Ramamoorthy 3. Principles of Instrumental Analysis Skoog, Holler and Nieman, 5th Edition, Ch: 12 4. Principles of Instrumental Analysis Skoog, Holler and Nieman, 5th Edition, Ch: 20

Unit III

- 1. Instrumental Analysis by Douglas A. Skoog F. James Holler Crouch, Publisher: Cengage; Edition, (2003), ISBN-10: 8131505421, ISBN-13: 978-8131505427
- 2. Physical Principles of Electron Microscopy, An Introduction to TEM, SEM, and AEM
- 3. Authors: Ray F. Egerton, ISBN: 978-0- 387-25800- 3 (Print) 978-0- 387-26016- 7 (Online)
- 4. Modern techniques of surface science by D.P. Woodruff, T.A. Delchar, Cambridge Univ. Press. 1994.
- 5. Introduction to Scanning Tunneling Microscopy by C. J. Chen, Oxford University Press, New York, 1993.
- 6. 5. Transmission Electron Microscopy: A text book for Material Science, David B Williams and C., Barry Carter, Springer
- 7. Modern Spectroscopy, by J.M. Hollas, 3rd Edition (1996), John Wiley, New York
- 8. Principles of Instrumental Analysis Skoog, Holler, Nieman, 5th ed., Harcourt College Publishers, 1998.
- 9. Instrumental Analysis by Douglas A. Skoog F. James Holler Crouch, Publisher: Cengage; Edition (2003), ISBN10: 8131505421, ISBN-13: 978-8131505427

Unit IV

- 1. Principles of Instrumental Analysis Skoog, Holler, Nieman, 5th Edition, Harcourt College Publishers, 1998. Chapters 23, 24, 25.
- 2. Analytical Chemistry Principles John H Kennnedy, 2nd edition, Saunders College Publishing (1990).

- 3. Modern Analytical Chemistry David Harvey; McGraw Hill Higher education publishers, (2000).
- 4. Vogel's Text book of quantitative chemical analysis, 6th edition, Pearson Education Limited, (2007).
- 5. Electrochemical Methods Fundamentals and Applications, Allen J Bard and Larry R Faulkner, John Wiley and Sons, (1980).
- 6. Instrumental Methods of Analysis Willard, Merrit, Dean and Settle, 7th edition, CBS publishers.

Analytical Chemistry Practical

Course Description			
Semester	II		
Course Name	Analytical Chemistry		
Course Code	PSC2ACP		
Eligibility for Course	T. Y. B.Sc (Chemistry)		
Credit	2		
Hours	30		

Sr. No.	COs	Bloom
		Taxonomy
		Level (BLT)
CO1	Demonstrate the operational skills on the selected instruments and retrieve information	Understand
CO2	Develop a sense of time management, safe use of chemicals and environmental safety	Apply
CO3	Measure the physical property of the samples and relate it with quantity	Evaluate
CO4	Construct the graphs based on the measurements and calculations	Evaluate

Sr.	Course Description	Hrs
No.		
1	To determine percent purity of washing soda in terms of sodium carbonate pH metrically.	4
2	To determine amount of Ti (III) and Fe (II) in a mixture by titration with Ce (IV) potentiometrically.	4
3	To determine the amount of nitrite present in the given water sample colorimetrically.	4
4	To determine the amount of Fe (II) and Fe (III) in a mixture using 1,10-phenanthroline spectrophotometrically.	4
5	Simultaneous determination of Cr (VI) and Mn (VII) in a mixture spectrophotometrically.	4

6	To determine the percentage composition of HCl and H ₂ SO ₄ on	4
	weight basis in a mixture of two by conductometric titration with	
	NaOH and BaCl ₂ .	
7	To determine amount of potassium in the given sample of fertilizers	4
	using flame photometer by standard addition method.	
8	Separation of benzene and toluene using gas chromatography and	4
	determination of column resolution (Rs). (demonstration)	

References

- 1. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by A. I. Vogels, 3rd Ed. ELBS (1964)
- 2. Vogel's textbook of quantitative chemical analysis, Sixth Ed. Mendham, Denny, Barnes, Thomas, Pearson education
- 3. Standard methods of chemical analysis, F. J. Welcher
- 4. Standard Instrumental methods of Chemical Analysis, F. J. Welcher
- 5. W.W.Scott."Standard methods of Chemical Analysis", Vol.I, Van Nostrand Company, Inc., 1939.
- 6. E.B. Sandell and H.Onishi, "Spectrophotometric Determination of Traces of Metals", Part-II, 4th Ed., A Wiley Interscience Publication, New York, 1978.

Course Description (Elective-I)		
Semester	II	
Course Name	Inorganic Chemistry-I	
Course Code	PSC2IC2	
Eligibility for Course	T.Y.B.Sc.in Chemistry	
Credit	2	
Hours	30	

Course Objectives:

- 1. To study and understand Photochemical Reactions, Ligand substitution reactions of octahedral and tetrahedral complexes, Redox reactions: inner and outer sphere mechanisms, stereochemistry of substitution reactions of octahedral complexes
- 2. To study and understand Organometallic Chemistry of Transition metals, Eighteen and sixteen electron rule, Structure and bonding on the basis of VBT and MOT in organometallic compounds.

- 3. To study and understand Toxicity of metallic species including case studies. Interaction of radiation in context with the environment: Sources and biological implication of radioactive materials.
- 4. To study concept of green chemistry, Biomass and biofuels.
- 5. To study and understand Bioinorganic Chemistry related to Biological oxygen carriers; hemoglobin, hemorythrene and hemocyanine- structure of metal active center and differences in mechanism of oxygen binding, Copper containing enzymes, Nitrogen fixation Metal ion transport and storage Medicinal applications of cis-platin and related compounds.

Course Outcomes

Sr.No.	After completing the course, Student will able to:	Bloom Taxonomy Level (BTL)
CO1	Recall Organometallic Chemistry of Transition metals, Eighteen and sixteen electron rules, Preparation and property's structure and bonding of the Organometallic compounds	Remember
CO2	Explain Photochemical Reactions, Ligand substitution reactions of: Octahedral complexes, Square planar complexes, trans-effect, its theories and applications. Redox reactions: inner and outer sphere mechanisms, stereochemistry of substitution reactions of octahedral complexes	Understand

Unit	Course Description	Hrs
1.	Inorganic Reaction Mechanism:	15h
1.1	Photochemical Reactions:	
	Prompt and delayed reactions, Quantum yield, Recapitulation of	
	fluorescence and phosphorescence. Photochemical reactions by irradiating	
	at d-d and charge transfer bands.	
1.2	Ligand substitution reactions of:	
	<u>a)</u> Octahedral complexes without breaking of metal-ligand bond (Use of	
	isotopiclabelling method)	
	<u>b)</u> Square planar complexes, trans-effect, its theories and applications.	
	Mechanismand factors affecting these substitution reactions.	
1.3	Redox reactions: inner and outer sphere mechanisms, complimentary and	
	non-complimentary reactions.	
1.4	Stereochemistry of substitution reactions of octahedral complexes.	
	(Isomerization andracemization reactions and applications.)	
2.	Organometallic Chemistry of Transition metals:	15h
2.1	Eighteen and sixteen electron rule and electron counting with examples.	
2.2	Preparation and properties of the following compounds	
	(a) Alkyl and aryl derivatives transition metal complexes	
	(b) Carbenes and carbynes of Cr, Mo and W	
	(c) Alkene derivatives of Pd and Pt	
	(d) Alkyne derivatives of Pd and Pt	

	(e) Allyl derivatives of nickel(f) Sandwich compounds of Fe, Cr and Half Sandwich compounds of Cr, Mo.	
2.3	Basic organometallic reactions introduction: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry	

Course Description (Elective-II)		
Semester	II	
Course Name	Inorganic Chemistry-II	
Course Code	PSC2IC2	
Eligibility for Course	T.Y.B.Sc.in Chemistry	
Credit	2	
Hours	30	

Sr. No.	COs	Bloom
		Taxonomy
		Level (BLT)
CO1	Measure the physical property of the samples and relate it with quantity	Evaluate
CO2	Construct the graphs based on the measurements and calculations	Evaluate

Unit	Course Description	Hrs
3.	Environmental Chemistry:	15h
3.1	Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and	
	chromium, with respect to their sources, distribution, speciation,	
	biochemical effects and toxicology, control and treatment.	
3.2	Case Studies:	
	(a) Itai-itai disease for Cadmium toxicity,	
	(b) Arsenic Poisoning in the Indo-Bangladesh region.	
3.3	Interaction of radiation in context with the environment:Sources and	
	biological implication of radioactive materials. Effect of low level	
	radiation on cells- Its applications in diagnosis and treatment, Effect of	
	radiation on cell proliferation and cancer.	
3.4	Green Chemistry:	
	Biomass and Biofuels:	
	Issues of Ethanol, Biodiesel from Plant Oils and from Algae Activity.	
	Bio-based Liquid Fuels and Chemicals,	
	Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals	
	and Liquid Fuels,	
	Thermochemical Production of Fuels: Including Methanol and	
	Hydrogen—Fuel of the Future.	
4		1.71
4.	Bioinorganic Chemistry:	15h
4.1	Biological oxygen carriers; hemoglobin, hemerythrene and	
	hemocyanine- structure of metal active center and differences in	
	mechanism of oxygen binding, Differences between hemoglobin and	
	myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill	
	equation, pH dependence of oxygen affinity in hemoglobin and	
	myoglobin and it"s implications.	

4.2	Activation of oxygen in biological system with examples of mono- oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes.	
4.3	Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site	
4.4	Nitrogen fixation-nitrogenase, hydrogenases	
4.5	Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	
4.6	Medicinal applications of cis-platin and related compounds	

References

UNIT-I

- 1. P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, Inorganic Chemistry, 5thEd., Oxford University Press, 2010.
- 2. D. Banerjea, Coordination Chemistry, Tata McGraw Hill, 1993.
- 3. W. H. Malik, G. D./Tuli and R. D. Madan, Selected Topics in Inorganic Chemistry, 8thEd., S. Chand & Company ltd.
- 4. M. L. Tobe and J. Burgess, Inorganic Reaction Mechanism, Longman, 1999.
- 5. S. Asperger, Chemical kinetics and Inorganic Reaction Mechanism, 2nd Ed., Kluwer Academic/ Plenum Publishers, 2002
- 6. Gurdeep Raj, Advanced Inorganic Chemistry-Vol.II, 12th Edition, Goel publishing house, 2012.
- 7. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, MilestonePublishers, 2013-2014.
- 8. F. Basalo and R. G. Pearson, Mechanism of Inorganic Reactions, 2nd Ed., Wiley, 1967.
- 9. R. Gopalan and V. Ramlingam, Concise Coordination chemistry, Vikas Publishing housePvt Ltd., 2001.
- 10. Inorganic reaction mechanism by Jorden & inorganic reaction mechanism by Basolo Pearson
- 11. Robert B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems, 3rdEd., Oxford University Press 2008.

Unit II

- 1. D. Banerjea, Coordination chemistry. Tata McGrew Hill, New Delhi, 1993.
- 2. R.C Mehrotra and A.Singh, Organometallic Chemistry- A unified Approach, 2nded, NewAge International Pvt Ltd, 2000.
- 3. R.H Crabtree, The Organometallic Chemistry of the Transition Metals, 5th edition, WileyInternational Pvt, Ltd 2000.
- 4. B.Doughlas, D.H McDaniel and J.J Alexander. Concepts and Models of Inorganic Chemistry, 2nd edition, John Wiley and Sons. 1983.

- 5. Organometallic Chemistry by G.S Sodhi. Ane Books Pvt Ltd.
- 6. G. Miessler and D. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education, 2004
- 7. Organometallic chemistry by B.D.Gupta.
- 8. Organometallic chemistry by "Crabtree

Unit III

- 1. Environmental Chemistry 5th edition, Colin Baird Michael Cann, W. H. Freeman and Company, New York, 2012.
- 2. Environmental Chemistry 7th edition, Stanley E. Manahan, CRC Press Publishers,
- 3. Environmental Contaminants, Daniel A. Vallero, ISBN: 0-12-710057-1, Elsevier Inc., 2004.
- 4. Environmental Science 13th edition, G. Tyler Miller Jr. and Scott E. Spoolman, ISBN-10:0-495-56016-2, Brooks/Cole, Cengage Learning, 2010.
- 5. Fundamentals of Environmental and Toxicological Chemistry 4th edition, Stanley E. Manahan, ISBN: 978-1-4665-5317-0, CRC Press Taylor & Francis Group, 2013.
- 6. Living in the Environment 17th edition, G. Tyler Miller Jr. and Scott E. Spoolman, ISBN-10: 0-538-49414-X, Brooks/Cole, Cengage Learning, 2011
- 7. Poisoning and Toxicology Handbook, Jerrold B. Leikin, Frank P. Paloucek, ISBN: 1-4200-4479-6, Informa Healthcare USA, Inc.
- 8. Casarett and Doull's Toxicology- The Basic Science of Poisons 6th edition, McGraw-Hill,2001.

Unit IV

- 1. R. W. Hay, Bioinorganic Chemistry, Ellis Harwood, England, 1984.
- 2. I. Bertini, H.B.Gray, S. J. Lippard and J.S. Valentine, Bioinorganic Chemistry, First SouthIndian Edition, Viva Books, New Delhi, 1998.
- 3. J. A. Cowan, Inorganic Biochemistry-An introduction, VCH Publication, 1993.
- 4. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry, University SciencePublications, Mill Valley, Caligronic, 1994.
- 5. G.N. Mukherjee and A. Das, Elements of Bioinorganic Chemistry, Dhuri& Sons, Calcutta, 1988.
- 6. J.Chem. Educ. (Special issue), Nov, 1985.
- 7. E.Frienden, J.Chem. Educ., 1985, 62.
- 8. Robert R.Crechton, Biological Inorganic Chemistry An Introduction, Elsevier
- 9. J. R. Frausto da Silva and R. J. P. Williams The Biological Chemistry of the Elements, Clarendon Press, Oxford, 1991.
- 10. JM. D. Yudkin and R. E. Offord A Guidebook to Biochemistry, Cambridge UniversityPress, 1980.

Course Description		
Semester	II	
Course Name	Inorganic Chemistry Practical	
Course Code	PSC2ICP	
Eligibility for Course	T.Y.B.Sc.in Chemistry	
Credit	2	
Hours	30	

Course Outcomes

COs.	After completing the course, Students will be able to:	Bloom Taxonomy Level (BTL)
CO1	Analyse ores and alloys using volumetric and gravimetric analysis.	Analyse
CO2	Estimate percentage of metals in the ore and alloy	Evaluate
CO3	Apply the potentiometric method for redox titrations of Fe, Cu etc.	Apply

Ores and Alloys

- 1) Analysis of Devarda"s alloy
- 2) Analysis of Cu Ni alloy
- 3) Analysis of Tin Solder alloy
- 4) Analysis of Brass alloy

Instrumentation

- 1) Estimation of Copper using Iodometric method Potentiometrically.
- 2) Estimation of Fe+3 solution using Ce(IV) ions Potentiometrically

Reference:

- 1. Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur& Sons Pvt Ltd
- 2. The Synthesis and Characterization of Inorganic Compounds by William L. Jolly 3. Inorganic Chemistry Practical Under UGC Syllabus for M.Sc. in all India Universities By: DrDeepak Pant

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL

(AUTONOMOUS COLLEGE)

Re-accredited 'A+' Grade by NAAC
'College with Potential for Excellence' Status Awarded by UGC'Best College
Award' by University of Mumbai

NEP 2020

Syllabus for M.Sc.-I Organic Chemistry

Programme: M.Sc.

Course: M.Sc.-I Organic Chemistry

Programme Code: MSCOC1018

Choice Based Credit, Grading and Semester System (60:40)

w.e.f. Academic Year 2023-2024

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS COLLEGE)

Approved of Syllabus M.Sc-I Organic Chemistry

Sr. No.	Heading	Particulars
1	Title of Course	M.ScI Organic Chemistry
2	Eligibility for Admission	The B.Sc. degree examination of University of Mumbai with chemistry 6 units or 3 units or degree of any other university recognized as equivalent thereto.
3	Passing marks	Minimum D Grade or equivalent minimum marks for passing at the Graduation level.
4	Ordinances/Regulations (if any)	2/
5	No. of Semesters	One year/Two semester
6	Level	P.G. part-I
7	Pattern	Semester (60:40)
8	Status	Revised
9	To be implemented from Academic year	2023-2024

Name of BOS Chairman: Prof. (Dr.) B.V. Jadhav Signature of BOS Chairman:

After completion of M.Sc. programme students will acquire

S. N.	After completion of M.Sc. program students will acquire	Graduate Attribute
PO1	An ability to identify and describe broadly accepted methodologies of science, and different modes of reasoning.	Disciplinary knowledge
PO2	An ability to demonstrate proficiency in various instrumentation, modern tools, advanced techniques and ICT to meet industrial expectations and research outputs.	Disciplinary knowledge/Digital literacy
PO3	An ability to identify problems, formulates, and proves hypotheses by applying theoretical knowledge and skills relevant to the discipline.	Problem-solving
PO4	An ability to be articulate thoughts, research ideas, information, scientific outcomes in oral and in written presentation to range of audience.	Communication skills
PO5	A capacity for independent, conceptual and creative thinking, analysis and problem solving through the existing methods of enquiry.	Problem solving
PO6	Skills required for cutting edge research, investigations, field study, documentation, networking, and ability to build logical arguments using scholarly evidence.	Research skills
PO7	An ability to portray good interpersonal skills with ability to work collaboratively as part of a team undertaking a range of different team roles	Teamwork
PO8	The ability to understand ethical responsibilities and impact of scientific solutions in global, societal and environmental context and contribute to the sustainable development	Moral and ethical awareness/ multicultural competence
PO9	An ability to demonstrate leadership, to take action and to get others involved.	Leadership
PO10	An openness to and interest in, life-long learning through directed and self-directed study	Self-directed learning
PO11	An ability to translate the knowledge and demonstrate the skills required to be employed and successful professional development.	Life-long learning

Programme: M.Sc. Organic Chemistry

PSOs No.	After completing the programme in M.Sc. Organic Chemistry, Student will able to:	Graduate Attribute
PSO1	Develop analytical thinking and apply the same for understanding principles, proposing mechanism and logical conclusions, understanding of the interdisciplinary nature of Chemistry and emerging trends in Chemistry.	Disciplinary knowledge Problem solving
PSO2	Get research opportunities in academics as well as employment at R & D in synthetic division of chemical, pharmaceutical, dyestuff and food industries	Research skills
PSO3	Competency in design and planning of synthesis and carry out with Good Laboratory Practices, handling instruments and interpretation of spectral data for structure determination of organic compounds	Research skills

Masters of Science (Organic Chemistry) Syllabus for Semester I and II

Preamble of the Syllabus:

Master of Science (M.Sc.) in Organic Chemistry is a post-graduate course of department of chemistry, Changu Kana Thakur Arts, Commerce & Science college, New Panvel (Autonomous).

There are two P.G. programmes in Chemistry, namely M.Sc. programme in Organic Chemistry and M.Sc. programme in Analytical Chemistry. Both P.G. programmes are equivalent in all respect for employment and higher studies. Each of these two P.G. programmes shall extend over a period of two academic years comprising of four semesters. The syllabi and scheme of examinations of these two programmes are detailed below. The theory and practicals of courses of two Semesters of the two programmes are same. Chemistry is a fundamental science and has contributed immensely to the improvement of the life of human beings by providing many of human requirements and essentialities. Chemistry is important to the world economy as well. The developments in Chemistry during last few decades are phenomenal. It is also seen that these developments are crossing the traditional vertical boundaries of scientific disciplines; the more inclination is seen towards biological sciences. New branches of chemistry are emerging and gaining importance, such as bioorganic chemistry, materials chemistry, computational chemistry, etc.

The practice of Chemistry at industrial scale also is undergoing radical changes and is more or more based on deep understanding the chemical phenomena. The emerging Chemical Technologies are highly science based. The aid of computers has not only accelerated growth in the practice of Chemistry, but revolutionized the entire field. A chemist cannot isolate himself from other disciplines. Thus, after a long span of more and more specialization in graduate and post-graduate syllabi, a symbiotic interdisciplinary approach now seems to be more relevant.

ज. भ.शि.प्र.संस्था

Objectives of the Course:

- 1. To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
- 2. To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment, and modern instrumentation.
- 3. To provide the students with sound preparation for requirement of modern industry and provide competency in basic academic research as well as a cohesive, clearly structured overview of Chemistry

Course Outcome:

- 1. Think critically and analyse chemical problems.
- 2. Present scientific and technical information resulting from laboratory experimentation in both written and oral formats.
- 3. Work effectively and safely in a laboratory environment.
- 4. Use technologies/instrumentation to gather and analyse data.
- 5. Work in teams as well as independently.
- 6. Apply modern methods of analysis to chemical systems in a laboratory setting.

M. Sc. Organic Chemistry

For the subject of chemistry there shall be four papers for 60 lectures each comprising of four units of 15 L each.

Semester-I

- 1. Paper-I / Inorganic Chemistry,
- 2. Paper- I / Organic Chemistry
- 3. Paper- III / Analytical Chemistry
- 4. Paper- IV/Physical Chemistry-I, II (Electives)
- 5. Paper- V/Research Methodology

Semester-II

- 1. Paper-I / Inorganic Chemistry,
- 2. Paper- I / Organic Chemistry
- 3. Paper- III / Analytical Chemistry
- 4. Paper- IV/Physical Chemistry-I, II (Electives)
- 5. On Job Training (OJT)

☐ Scheme of Examination

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40% marks in the first part and by conducting the Semester End Examinations with 60% marks in the second part. The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below-

A) Internal Assessment: 40 % 40 Marks

Sr. No.	Particular	Marks
01	One periodical class test / online examination to be conducted in the given semester	20 Marks
02	Any One tools out of these (15 Marks each) 1. Group/ Individual Project 2. Presentation and write up on the selected topics of the subjects / Case studies. 3. Test on Practical Skills 4. Open Book Test 5. Quiz	15 Marks
03	Active participation	05

Question Paper Pattern

(Periodical Class Test for the Courses at Under Graduate Programmes)

Maximum Marks: 20 Duration: 40 Minutes

Questions to be set: 02

All Questions are Compulsory

Question No.	Particula r	Marks
Q-1	Match the Column / Fill in the Blanks / Multiple Choice Questions/ Answer in One or Two Lines (Concept based Questions) (1 Marks / 2 Marks each)	10 Marks
Q-2	Answer in Brief (Attempt any Two of the Three) (5 Marks each)	10 Marks

B) Semester End Examination: 60 %

60 Marks

• Duration: The examination shall be of $2\frac{1}{2}$ hours duration.

Question Paper Pattern

Theory question paper pattern

- 1. There shall be five questions each of 12 marks.
- 2. All questions shall be compulsory with internal options.
- 3. Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

□ Passing Standard

The learners shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment and Semester End Examination. The learners shall obtain minimum of 40% marks (i.e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i.e. 24 Out of 60) separately, to pass the course and minimum of grade D in each project wherever applicable to pass a particular semester.

❖ Guidelines and Evaluation pattern for project work (100 Marks)

Introduction

Inclusion of project work in the course curriculum of the M.Sc. programme is one of the ambitious aspects in the programme structure. The main objective of inclusion of project work is to inculcate the element of research work challenging the potential of learner as regards to his/ her eager to enquire and ability to interpret particular aspect of the study in his/ her own words. It is expected that the guiding teacher should undertake the counselling sessions and make the awareness among the learners about the methodology of formulation, preparation and evaluation pattern of the project work.

- There are two modes of preparation of project work
 - 1. Project work based on research methodology in the study area
 - 2. Project work based on internship in the study area

	Theory: The Semester End Examination for theory course work will				
	be conducted as per the following scheme.				
	Each theory paper shall be of two- and half-hour duration.				
I					
	All question	s are compulsory and will have inter	rnal options.		
	Q-1	From Unit – I (having internal opti	ions.) 12 M		
	Q-2	From Unit – II (having internal opt	tions.) 12M		
	Q-3	From Unit – III (having internal options.) 12M			
	Q-4	From Unit – IV (having internal options.) 12M			
	Q-5	Questions from all the FOUR Units with equal weightage of marks allotted to each Unit. 12 M			
II	Practical	The Semester End Examination for Practical course work will be conducted as per the following scheme.			
Sr.	Particulars of External Practical Examination Marks%				
No.	Tartediais of External Factorial Examination (Viai Rs 70)				
1	Laboratory V	Wor <mark>k </mark>	80		
2	Journal	AM. GP	10		
3	Viva	EL.RA	10		
	TOTAL		100		

Choice Based Credit, Grading and Semester System (CBCGS) To be implemented from the Academic year 2023-24

M.Sc.-I Organic Chemistry Semester- I

Course Code	Unit	Topics	Credits	L / Week
	I	Chemical Bonding		1
	II	Molecular Symmetry and Group Theory		1
PSC1IC1	III	Materials Chemistry and Nanomaterials	4	1
	IV	Characterization of Coordination Compounds		1
	I	Addition reactions		1
	II	Nucleophilic substitution reactions and Aromaticity		1
PSC1OC1	III	Stereochemistry	4	1
	IV	Oxidati <mark>on and R</mark> eduction		1
	I	Language of Analytical Chemistry		1
	II	Quality in Analytical Chemistry	7	1
PSC1AC1	III	Optical Methods	4	1
	IV	Thermal Methods		1
	I	Print: Primary, Secondary and Tertiary sources		1
DCC1DM	II	DATA ANALYSIS		1
PSC1RM	III	Methods Of Scientific Research and Writing	4	1
	IV	Chemical Safety & Ethical Handling of Chemicals		1
PSC1OCP + PSC1ACP	-	Practical Course Organic chemistry Practical's + Analytical Chemistry Practical's	2	8
PSC1PC1	I	Thermodynamics-I	2	2

Elective-I	II	Quantum Chemistry		
PSC1PC2	III	Chemical Dynamics-I		
Elective-II	IV	Electrochemistry	2	2
PSC1PCP + PSC1ICP	-	Practical Course Physical chemistry Practical's + Inorganic Chemistry Practical's	2	8
	I	Research and Literature Survey		1
PSC1RM	II	Data Analysis	4	1
	III	Methods of Scientific Research and Writing	4	1
	IV	Chemical Safety and Ethical handling of Chemicals		1

Choice Based Credit, Grading and Semester System (CBCGS) To be implemented from the Academic year 2023-2024

M.Sc.-I Organic Chemistry Semester- II

Course Code	Unit	Topics	Credits	L / Week
	I	Inorganic Reaction Mechanism		1
	II	Organometallic Chemistry of Transition metals		1
	III	Environmental Chemistry	4	1
PSC2IC2	IV	Bioinorganic Chemistry	7	1
	I	Alkylation of Nucleophilic Carbon Intermediates Reaction of carbon nucleophiles with carbonyl groups		1
	II	Reactions and Rearrangements	4	1
PSC2OC2	III	Eliminations Reactions and Organometallic Chemistry	4	1
	IV	NMR spectroscopy and Mass spectrometry		1
	I	Chromatography		1
	II	X-ray spectroscopy, Mass spectrometry, Radioanalytical Methods		1
PSC2AC2	III	 Surface Analytical Techniques Atomic Spectroscopy 	4	1
	IV	Electroanalytical Methods		1
PSC2OCP + PSC2ACP	-	Practical Course Organic chemistry Practical's + Analytical Chemistry Practical's	2	8
PSC2PC1		Chemical Thermodynamics II	2	1
Elective-I		Quantum Chemistry II		
PSC2PC Elective-II		Chemical Kinetics and Molecular Reaction Dynamics Solid State Chemistry and Phase Equilibria	2	1
PSC1PCP + PSC1ICP	-	Practical Course Physical chemistry Practical's + Inorganic Chemistry Practical's	2	8
	OJT	On Job training	4	

SEMESTER-I

Course Description (Major)			
Semester	I		
Course Name	Inorganic Chemistry		
Course Code	PSC1IC1		
Eligibility for Course	T.Y.B. Sc.in Chemistry		
Credit	4		
Hours	60		

Course Objectives:

- 1. To apply theories of bonding, hybridization, MOT for Polyatomic species.
- 2. To understand preparation, proporties and structures of higher boranes, carboranes, metalloboranes and metallocarboranes, metal carbonyls and halide clusters.
- 3. To understand all elements of symmetry, point group, symmetry classification, symmetry criterion of optical activity, symmetry restrictions on dipole moment.
- 4. To understand concepts of Groups, Sub-groups, Classes of Symmetry operations, Group Multiplication Tables. Abelian and non-Abelian point groups, Mulliken's notations for irreducible representations. Reduction of reducible representations using reduction formula.
- 5. To understand concept of band theory, Fermi level, K-Space and Brillouin Zones, Defects in solids.
- 6.To explain Preparative methods of inorganic solids & nano materials.
- 7.To explain Electron Paramagnetic Resonance Spectroscopy and its applications, spectral calculations using Orgel and Tanabe-Sugano diagram.
- 8. To determine of formation constants of metal complexes.

Course Outcomes

Sr.No.	After completing the course, Student will able to:	Bloom Taxonomy Level (BTL)	
CO1	Explain theories of bonding, hybridization, resonance concept, MOT for diatomic species of first transition Series, Polyatomic species and Higher boranes, carboranes, metalloboranes and metallocarboranes, metal carbonyls and halide clusters.	Understand	
CO2	Explain The concept of band theory, Fermi level, K-Space and Brillouin Zones. Structures of Compounds of the type: AB, AB2 etc. and Preparative methods of inorganic solids & nano materials.	Understand	
CO3	Construct Group Multiplication Tables, Character tables using concept of Molecular Symmetry and Group Theory.	Apply	
CO4	Determine electronic parameters such as Δ, B, C, Nephelauxetic ratio, formation constants of metal complexes and Characterize coordination compounds using techniques like thermal studies, Conductivity measurements, electronic spectral and magnetic measurements, IR, NMR and ESR spectroscopic	Evaluate	

Unit	Course Description	Hrs
1.	Chemical Bonding:	15h
1.1	Recapitulation of hybridization Derivation of wave functions for sp,	
	sp2, sp3 orbitalhybridization types considering only sigma bonding.	
1.2	Discussion of involvement of d orbitals in various types of	
	hybridizations. Concept ofresonance, resonance energy derivation	
	expected. Formal charge with examples.	
1.3	Molecular Orbital Theory for Polyatomic species considering σ bonding	
	for SF6, CO2,B2H6, I3- molecular species.	
1.4	Higher boranes, carboranes, metalloboranes and metallocarboranes, metal	
	carbonyls and halide clusters, compounds with metal-metal multiple	
	bonds.	
2.	Molecular Symmetry and Group Theory:	15h
2.1	Symmetry criterion of optical activity, symmetry restrictions on dipole	
1	moment. Asystematic procedure for symmetry classification of molecules.	
2.2	Concepts of Groups, Sub-groups, Classes of Symmetry operations, Group	
_ 	Multiplication Tables. Abelian and non-Abelian point groups.	
2.3	Representation of Groups: Matrix representation of symmetry operations,	
	reducible and irreducible representations. The Great Orthogonality	
	Theorem and its application in construction of character tables for point	
	groups C2v, C3v and D2h, structure of character tables.	
	groups 621, 631 and 5211, structure of character tables.	
2.4	Applications of Group Theory	
	(a) Symmetry adapted linear combinations (SALC), symmetry aspects	
	of MO theory, sigma bonding in ABn (Ammonia, CH4) molecule.	
	(b) Determination of symmetry species for translations and rotations.	
	(c) Mulliken"s notations for irreducible representations.	
	(d) Reduction of reducible representations using reduction formula.	
	(e) Group-subgroup relationships.	
	(f) Descent and ascent in symmetry correlation diagrams showing	
	relationship between different groups.	
3.	Materials Chemistry and Nanomaterials:	15h
3.1	Solid State Chemistry	1011
3.1.1	Electronic structure of solids and band theory, Fermi level, K Space and	
	Brillouin Zones.	
3.1.2	Crystal Defects and non-stoichiometry:	
0.1.2	Classification of Defects: subatomic, atomic and lattice defects in solids;	
	Thermodynamics of vacancy in metals; Thermodynamics of Schottky	
	defects in ionic solids; Thermodynamics of Frenkel defects in silver	
	halides; Calculation of number of defects and average energy required for	
	defect.	
3.1.3	Methods of preparation for inorganic solids: sol- gel method (applications	
	in Biosensors), microwave synthesis (discussion on principles, examples,	
	merits and demerits are expected)	
3.2	Nanomaterials	
3.2.1	Preparative methods: Chemical methods, Microwave, Langmuir Blodgett(L-	
J.2.1	B) method, Biological methods: Synthesis using microorganisms	
3.2.2	Applications in the field of semiconductors, solar cells	
4.	Characterisation of Coordination compounds	15h

4.1	Electron Paramagnetic Resonance Spectroscopy (EPR):	
	i) Theory and Instrumentation of EPR in brief.	
	ii) Spin Hamiltonian, Isotropic and anisotropic EPR spectra, Magic	
	Pentagon rule.	
	iii) Applications of EPR spectroscopy: Structural determination of	
	Inorganic complexes	
4.2	Spectral calculations using Orgel and Tanabe-Sugano diagram, calculation	
	of electronic parameters such as Δ , B, C, Nephelauxetic ratio.	
4.3	Determination of formation constants of metal complexes (Overall and	
	Stepwise): Comparative studies of Potentiometric and spectral methods.	

References

Unit I

- **1.** B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2013-2014.
- **2.** W. W. Porterfield, Inorganic Chemistry-A Unified Approach, 2nd Ed., Academic Press, 1993.
- **3.** B. W. Pfennig, Principles of Inorganic Chemistry, Wiley, 2015.
- **4.** C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson Education Limited, 2ndEdition 2005.
- **5.** J. Huheey, F. A. Keiter and R. I. Keiter, Inorganic Chemistry–Principles of Structure and Reactivity, 4th Ed., Harper Collins, 1993.
- **6.** P. J. Durrant and B. Durrant, Introduction to Advanced Inorganic Chemistry, OxfordUniversity Press, 1967.
- **7.** R. L. Dekock and H.B.Gray, Chemical Structure and Bonding, The Benjamin CummingsPublishing Company, 1989.
- **8.** G. Miessler and D. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education, 2004.
- 9. R. Sarkar, General and Inorganic Chemistry, Books & Allied (P) Ltd., 2001.
- **10.** C. M. Day and J. Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt.Ltd., 1985.
- 11. J. N. Murrell, S. F. A. Kettle and J. M. Tedder, The Chemical Bond, Wiley, 1978.
- **12.** G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Inc., 1997.

Unit II

- 1. F. A. Cotton, Chemical Applications of Group Theory, 2nd Edition, Wiley Eastern Ltd.,1989.
- 2. H. H. Jaffe and M. Orchin, Symmetry in Chemistry, John Wiley & Sons, New York, 1996.
- 3. R. L. Carter, Molecular Symmetry and Group Theory, John Wiley & Sons, New York, 1998.
- 4. K. V. Reddy. Symmetry and Spectroscopy of Molecules, 2nd Edition, New Age International Publishers, New Delhi, 2009.
- 5. A. SalahuddinKunju and G. Krishnan, Group Theory and its Applications in

Chemistry, PHI Learning, 2012.

- 6. P. K. Bhattacharya, Group Theory and its Chemical Applications, Himalaya PublishingHouse. 2014.
- 7. S. Swarnalakshmi, T. Saroja and R. M. Ezhilarasi, A Simple Approach to Group Theory in Chemistry, Universities Press, 2008.

Unit III

- 1. Solid State Chemistry Introduction, Lesley E. Smart, Elaine A. Moore, ISBN 0-203-49635-3, Taylor & Francis Group, LLC.
- 2. Nanomaterials&Nanochemistry, 2007, Catherine Brechignac, Philippe Houdy, Marcel Lahmani, ISBN 978-3-540-72992-1 Springer Berlin Heidelberg New York.
- 3. Nanomaterials Chemistry, Recent Developments and New Directions C.N.R. Rao, A. Muller, and A.K. Cheetham, ISBN 978-3-527-31664-9, 2007 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim.
- 4. Nano-Surface Chemistry, 2001, Morton Rosoff, ISBN: 0-8247-0254-9, Marcel Dekker Inc.New York.
- 5. The Chemistry of Nanomaterials, CNR Rao, Muller Cheetham, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
- 6. Semiconductor Nanomaterials, Challa S.S.R. Kumar, ISBN: 978-3-527-32166-7, WILEY- VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

Unit IV

- 1. J. E. Huheey, E. A. Keiter and R. L. Keiter; Inorganic Chemistry: Principles of Structureand Reactivity, Pearson Education, 2006.
- 2. D. Banerjea, Coordination Chemistry
- 3. Geary Coordination reviews
- 4. P.W. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong; Shriver & Atkins: Inorganic Chemistry, 4th ed. Oxford University Press, 2006.
- 5. F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann; Advanced Inorganic Chemistry, 6th ed. Wiley, 1999,
- 6. B. Douglas, D. McDaniel and J. Alexander. Concepts and Models of Inorganic Chemistry(3rd edn.), John Wiley & Sons (1994).
- 7. Physical Methods in Chemistry, R. S. Drago (2nd Edition) (1977).

Course Description	
Semester	I
Course Name	Inorganic Chemistry Practical
Course Code	PSC1IC1
Eligibility for Course	T.Y.B.Sc.in Chemistry
Credit	2
Hours	30

Sr.		Bloom
No.	After completing the course, Students will be able to:	Taxonomy
		Level (BTL)

CO1	Prepare various inorganic complexes such as Bis-(tetramethylammonium) tetrachloroCuprate (II) (Me4 N) 2[CuCl4],Tetramminemonocarbanato Cobalt (III) Nitrate, Bis (ethylenediammine) Copper (II) Sulphate, Hydroniumdichlorobis(dimethylglyoximato) etc.	Understand
CO2	Determine the electrolytic nature of inorganic compounds	Apply
CO3	Apply Slope intercept method for determination of equilibrium constants for Fe ⁺³ / SCN- system.	Apply
CO4	Analyze the inorganic complex for percentage of metal and ligand.	Analyse

Inorganic Preparations (Synthesis and Characterization)

- 1) Bis-(tetramethylammonium) tetrachloroCuprate (II) (Me4 N) 2[CuCl4]
- 2) Tetramminemonocarbanato Cobalt (III) Nitrate [Co(NH3)4CO3]NO3
- 3) Bis (ethylenediammine) Copper (II) Sulphate [Cu(en)2]SO4
- 4) Hydronium dichlorobis(dimethylglyoximato) Cobaltate(III) H[Co(dmgH)2Cl2]

Instrumentation

- 1) Determination of equilibrium constant by Slope intercept method for Fe+3/ SCN-system
- 2) Determination of Electrolytic nature of inorganic compounds by Conductancemeasurement.

Reference:

1. Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur& Sons Pvt Ltd

The Synthesis and Characterization of Inorganic Compounds by William L. Jolly 3. Inorganic Chemistry Practical Under UGC Syllabus for M.Sc. in all India Universities By: Dr Deepak Pant

Course Description	
Semester	I
Course Name	Organic Chemistry
Course Code	PSC1OC1
Eligibility for Course	T.Y.B.Sc (Chemistry)
Credit	4
Hours	60

Course Objectives

- 1. To study the basics of addition reactions and their applications.
- 2. To study stereochemistry in man detail
- 3. To study the different reagents in the organic transformation.
- 4. To understand the role of carbon nucleophiles in organic synthesi

Course Outcomes

Sr.	CO	Bloom
No.		Taxonomy
		Level (BLT)
CO1	Understand the types of reaction and their applications	Remember
CO2	Summarize the various aspects of aromaticity, aliphatic and aromatic nucleophilic substitution reactions with their mechanism and examples.	Understand
CO3	Apply the concept of Configurational descriptors (R,S nomenclature) to chiral centres in Organic compounds	Apply
CO4	Predict the mechanism, selectivity, importance and applications of oxidizing and reducing agent	Apply

Unit	Course Description	Hrs
1.	Addition Reactions:	15
	1.1 Addition reactions to carbon carbon multiple bonds -Mechanism	
	and Stereochemical aspects of addition reaction Involving electrophile	
	1.2 Structural Effect and reactivity: Halogenation, Hydrohalogenation,	
	Hydration, Hydroxylation, Hydroboration, Epoxidation, Carbene	
	addition and Ozonolysis.	
	1.3. Acids and Bases: Factors affecting acidity and basicity:	
	Electronegativity and inductive effect, resonance, bond strength,	
	electrostatic effects, hybridization, aromaticity and solvation.	
	Comparative study of acidity and basicity of organic compounds on the	
	basis of pKa values, Leveling effect and non-aqueous solvents. Acid	
	and base catalysis – general and specific catalysis with examples.	
2.	Nucleophilic substitution reactions and Aromaticity:	15
	2.1. Nucleophilic substitution reactions: (9 L) 2.1.1. Aliphatic	
	nucleophilic substitution: SN1, SN2, SNi reactions, mixed SN1 and	
	SN2 and SET mechanisms. SN reactions involving NGP - participation	
	by aryl rings, α -and pi-bonds. Factors affecting these reactions:	
	substrate, nucleophilicity, solvent, steric effect, hard-soft interaction,	
	leaving group. Ambident nucleophiles.SNcA, SN1" and SN2"	
	reactions.SN at sp2 (vinylic) carbon. 2.1.2. Aromatic nucleophilic	
	substitution: SNAr, SN1, benzyne mechanisms. Ipso, cine, tele and vicarious substitution. 2.1.3. Ester hydrolysis: Classification,	
	nomenclature and study of mechanisms of acid and base catalyzed	
	hydrolysis with suitable examples (Any two). Orientation and	
	Reactivity-Effect of Substrate, Leaving group and attacking	
	nucleophile 2.2. Aromaticity: (6 L) 2.2.1. Structural, thermochemical,	
	and magnetic criteria for aromaticity, including NMR characteristics of	
	aromatic systems. Delocalization and aromaticity. 2.2.2. Application of	
	HMO theory to monocyclic conjugated systems. Frost-Musulin	
	This design to monocyclic conjugated systems. That musum	<u> </u>

		1
	diagrams. Huckel"s (4n+2) and 4n rules. 2.2.3. Aromatic and	
	antiaromatic compounds up-to 18 carbon atoms. Homoaromatic	
	compounds. Aromaticity of all benzenoid systems, heterocycles,	
	metallocenes, azulenes, annulenes, aromatic ions and Fullerene (C60)	
3.	Stereochemistry:	15
	3.1. Concept of Chirality: Recognition of symmetry elements.	
	3.2. Molecules with two or more chiral centers: Constitutionally	
	unsymmetrical molecules: erythro-threo and syn-anti systems of	
	nomenclature. Interconversion of Fischer, Sawhorse, Newman and	
	Flying wedge projections. Constitutionally symmetrical molecules with	
	odd and even number of chiral centers: enantiomeric and meso forms,	
	concept of stereogenic, chirotopic, and pseudoasymmetric centres.	
	Stereo-descriptors: R, S, for chiral centres in acyclic and cyclic	
	compounds.	
	3.3. Axial and planar chirality: Principles of axial and planar chirality.	
	Stereochemical features and configurational descriptors (R,S) for the	
	following classes of compounds: Allenes, Alkylidene cycloalkanes,	
	Spirans, Biaryls (buttressing effect) (including BINOLs and BINAPs),	
	Ansa compounds, Cyclophanes, trans-cyclooctenes.	
	3.4. Prochirality: Chiral and prochiral centres; prochiral axis and	
	prochiral plane. Homotopic, heterotopic (enantiotopic and	
	diastereotopic) ligands and faces. Identification using substitution and	
	symmetry criteria. Nomenclature of stereoheterotopic ligands and	
	faces. Symbols for stereoheterotopic ligands in molecules with i) one or	
	more prochiral centres ii) a chiral as well as a prochiral centre, iii) a	
	prochiral axis iv) a prochiral plane v) propseudoasymmetric centre.	
	Symbols for enantiotopic and diastereotopic faces. E, Z nomenclature	
	Resolution of Racemic mixtures	

4.1. Oxidation: General mechanism, selectivity, and important following: 4.1.1. Dehydrogenation: applications of the Dehydrogenation of C-C bonds including aromatization of six membered rings using metal (Pt, Pd, Ni) and organic reagents (chloranil, DDO). 4.1.2. Oxidation of alcohols to aldehydes and ketones: Chromium reagents such as K2Cr2O7/H2SO4 (Jones reagent), CrO3-pyridine (Collin"s reagent), PCC (Corey"s reagent) and PDC (Cornforth reagent), hypervalent iodine reagents (IBX, Dess-Martin periodinane). DMSO based reagents (Swern oxidation), Corey-Kim oxidation - advantages over Swern and limitations; and Pfitzner-Moffatt oxidation-DCC and DMSO and Oppenauer oxidation. 4.1.3. Oxidation involving C-C bonds cleavage: Glycols using HIO4; cycloalkanones using CrO3; aromatic rings using RuO4 and NaIO4. 4.1.4. Oxidation involving replacement of hydrogen by oxygen: oxidation of CH2 to CO by SeO2, oxidation of arylmethanes by CrO2Cl2 (Etard oxidation). 4.1.5. Oxidation of aldehydes and ketones: with H2O2 (Dakin reaction), with peroxy acid (Baeyer-Villiger oxidation) 4.2. Reduction: General mechanism, selectivity, and important applications of the following reducing reagents: 4.2.1. Reduction of CO to CH2 in aldehydes and ketones- Clemmensen reduction, WolffKishner reduction and Huang-Minlon modification. 4.2.2. Metal hydride reduction: Boron reagents (NaBH4, NaCNBH3, diborane, 9-BBN, Na(OAc)3BH, aluminium reagents (LiAlH4, DIBAL-H, Red Al, L and K- selectrides). 4.2.3. NH2NH2 (diimide reduction) and other non-metal based agents including organic reducing agents (Hantzschdihydropyridine). 4.2.4. Dissolving metal reductions: using Zn, Li, Na, and Mg under neutral and acidic conditions, Li/Naliquid NH3 mediated reduction (Birch reduction) of aromatic compounds and acetylenes.

Course Description	
Semester	I
Course Name	Organic Chemistry
Course Code	PSC1OCP
Eligibility for Course	T.Y.B.Sc (Chemistry)
Credit	2
Hours	30

Sr. No	COs	Bloom Taxonomy Level (BLT)
CO1	Plan preparation of organic compounds	Apply
CO2	Demonstrate the skill of purification of organic compounds by recrystallization and sublimation methods.	Understand
CO3	Apply the thin layer chromatography technique to check the purity of the synthesized product.	Apply
CO4	Can Sketch the structure of organic compounds using software Chem Biodraw.	Apply

Sr.	Course Description	Hrs
No.		
1.	One step preparations	40
2.	(1.0 g scale) 1. Bromobenzene to p-nitrobromobenzene	
3.	2. Anthracene to anthraquinone	
4.	3. Benzoin to benzil	
5.	4. Anthracene to Anthracene maleic anhydride adduct	
6.	5. 2-Naphthol to BINOL	
7.	6. p-Benzoquinone to 1,2,4-triacetoxybenzene	
8.	7. Ethyl acetoacetate to 3-methyl-1-phenylpyrazol-5-one	
9.	8. Preparation of benzilic acid from benzil	
10	9. Preparation of p-iodonitrobenzene from p-nitroaniline	
11.	11. Use of Computer - Chem Draw-Sketch, ISI – Draw: Draw the structure of simple aliphatic, aromatic, heterocyclic organic compounds with substituents. Get the correct IUPAC name, Get ¹ HNMR and ¹³ C. Students can able to draw the one name reaction and its reaction mechanism.	

- 1. Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford UniversityPress.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part A and B, Plenum Press.
- 3. Stereochemistry: Conformation and mechanism, P.S. Kalsi, New Age

International, NewDelhi.

- 4. Stereochemistry of carbon compounds, E.L Eliel, S.H Wilen and L.N Manden, Wiley.
- 5. Stereochemistry of Organic Compounds- Principles and Applications, D. Nasipuri. NewInternational Publishers Ltd.
- 6. March"s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B.Smith, Jerry March, Wiley.
- 7. Advanced Organic Chemistry: Reactions and mechanism, B. Miller and R. Prasad, Pearson Education.
- 8. Advanced Organic Chemistry: Reaction mechanisms, R. Bruckner, Academic Press.
- 9. Understanding Organic Reaction Mechanisms, Adams Jacobs, Cambridge UniversityPress.
- 10. Writing Reaction Mechanism in organic chemistry, A. Miller, P.H. Solomons, AcademicPress.
- 11. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Nelson Thornes.
- 12. Advanced Organic Chemistry: Reactions and mechanism, L.G. Wade, Jr., Maya ShankarSingh, Pearson Education.
- 13. Mechanism in Organic Chemistry, Peter sykes, 6th edition onwards.
- 14. Modern Methods of Organic Synthesis, W. Carruthers and Iain Coldham, CambridgeUniversity Press.
- 15. Organic Synthesis, Jagdamba Singh, L.D.S. Yadav, Pragati Prakashan.Organic Chemistry Practical

Course Description		
Semester	I	
Course Name	Analytical Chemistry	
Course Code	PSC1AC1	
Eligibility for Course	T.Y.B.Sc (Chemistry)	
Credit	4	
Hours	60	

Course Objectives

- 1. To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
- 2. To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment, and modern instrumentation.

3. To provide the students with sound preparation for requirement of modern industry and provide competency in basic academic research as well as a cohesive, clearly structured overview of Chemistry

Course Outcomes

Sr.	COs	Bloom
No		Taxonomy
		Level (BLT)
CO1	Explain the concept of data domain, performance characteristics of	Understand
	an instrument/method, total quality management, quality standards	
	for laboratories, quality audits and quality reviews.	
CO2	Discover the applications of UV-Visible spectroscopy, IR	Apply
	spectroscopy, Differential scanning calorimetry.	
CO3	Identify the need of automation in chemical analysis, safety	Evaluate
	measures in laboratory, need of accreditation of laboratories and	
	GLP.	
CO4	Interpret the data based on calculations and statistical tests.	Evaluate

Unit	Course Description	Hrs
1.	1.1 Concepts of Analytical Chemistry: [5L]	15
	1.1.1 Analytical perspective, Common analytical problems, terms involved in	
	analytical chemistry (analysis, determination, measurement, techniques, methods,	
	procedures and protocol)	
	1.1.2 An overview of analytical methods, types of instrumental methods,	
	instruments for analysis, data domains, electrical and non-electrical domains,	
	detectors, transducers and sensors,	
	1.2 Calculations based on Chemical Principles: [5L]	
	The following topics are to be covered in the form of numerical problems only.	
	a. Concentration of a solution based on volume and mass units.	
	b. Calculations of ppm, ppb and dilution of the solutions, concept of mmol.	
	c. Stoichiometry of chemical reactions, concept of kg mol, limiting reactant,	
	theoretical and practical yield.	
	1.3 Basic Statistical Tools: [5L]	
	Types of errors – determinate and indeterminate errors, Significant figures and	
	propagation of errors. Confidence limit, Test of significance – the F-test and t-test -	
	One sample t-test. Independent, Paired sample t-test. The statistical Q-test for	
	rejection of a result, statistics for small data sets,	
	Errors in instrumental analysis: Calibration curves, line of regression, errors in	
	slope and intercept.	
2.	Quality in Analytical Chemistry:	15
	2.1 Quality Management System (QMS): [5L]	
	Quality Management System: Quality management concepts and principles -	
	Traceability, quality control, quality assurance, quality management and quality	
	manual, calibration and test methods	
	TQM in Chemical Industry: Applying Kaizen, Six Sigma approach and 5S to	

quality in industries. Quality audits and quality reviews, responsibility of laboratory staff for quality and problems. 2.2 Good Laboratory Practices: [4L] GLP Principles, Documentation of laboratory work, Preparation of Standard Operating Procedures (SOPs), Validation of methods, reporting and documentation of results. 2.3. Accreditation of laboratories: [3L] International organization for standardization, National accreditation board for testing and calibration laboratories. Scope of accreditation. 2.4 Safety in Laboratories: [3L] Importance of Safety in Laboratories, classification of Personal Protection Equipment (PPE), Safety and health Standards: Indian Standards & codes for safety & health, OSHA standards, Types of Toxic Hazard (TH), Classification of Chemical Hazards and their control. 3. **Optical Methods:** 15 3.1 Recapitulation of basic concepts, Electromagnetic spectrum, Sources, Detectors, sample containers, Laser as a source of radiation, Fibre optics [3L] 3.2 Molecular Ultraviolet and Visible Spectroscopy [6L] 3.2.1 Derivation of Beer- Lambert's Law and its limitations, factors affecting molecular absorption, types of transitions [emphasis on charge transfer absorption], pH, temperature, solvent and effect of substituents. Applications of Ultraviolet and Visible spectroscopy: 1) On charge transfer absorption 2) Simultaneous spectroscopy 3) Derivative Spectroscopy 3.2.2 Dual spectrometry – Introduction, Principle, Instrumentation **Applications** 3.3 Infrared Absorption Spectroscopy [6L] 3.3.1 IR Spectrosopy: Principle, Instrumentation: Sources, Sample handling, Transducers. 3.3.2 FTIR Spectroscopy: Principle, instrumentation & its advantages. 3.3.3 Applications of IR spectroscopy: structure analysis of organic compounds, inorganic Molecules e.g. Sulphato, Carbonato, Nitrato & metal chelates - Acetylacetanato Complexes. Analysis of petroleum hydrocarbons, oil and grease contents by EPA method, Quantitative analysis of multi-component mixtures. 3.3.4 Introduction and basic principles of diffuse reflectance spectroscopy and its applications. 4. **4.1 Thermal Methods:** [5 L] 15 4.1.1 Introduction, Recapitulation of types of thermal methods, comparison between TGA and DTA. 4.1.2 Differential Scanning Calorimetry- Principle, comparison of DTA and DSC, Instrumentation, Block diagram, Nature of DSC Curve, Factors affecting curves (sample size, sample shape, pressure). 4.1.3 Applications - Heat of reaction, Specific heat, Safety screening, Polymers, liquid crystals, Percentage crystallinity, oxidative stability, Drug analysis, Magnetic transition. e. g. Analysis of Polyethylene for its crystallinity. 4.2 Automation in chemical analysis: [5 L] Need for automation, Objectives of automation, an overview of automated

instruments and instrumentation, process control analysis, flow injection analysis, discrete automated systems, automatic analysis based on multi-layered films, gas monitoring equipments, Automatic titrators.

4.3 Environmental Toxicology: [5]

Introduction to Environmental Toxicology, Concepts of Toxicology, Toxic substances in the environment, their sources and entry roots, Transport of toxicants by air and water; Transport through food chain-bio-transformation and bio-magnification. Analysis Methods

References

Unit I

- 1. Modern Analytical Chemistry by David Harvey, McGraw-Hill Higher Education
- 2. Principles of Instrumental Analysis Skoog, Holler and Nieman, 5th Edition, Ch. 1.
- 3. Fundamentals of Analytical Chemistry, By Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch, 9th Edition, 2004, Ch: 5.
- 4. Undergraduate Instrumental Analysis, 6th Edition, J W Robinson, Marcel Dekker, Ch:1. 5. ISO 9000 Quality Systems Handbook, Fourth Edition, David Hoyle. (Chapter: 3 & 4) (Free download).
- 5. 3000 solved problems in chemistry, Schaums Solved problem series, David E. Goldbers, McGraw Hill international Editions, Chapter 11,15,16,21,22

Unit II

- 1. Quality in the Analytical Laboratory, Elizabeth Pichard, Wiley India, Ch. 5, Ch. 6 & Ch. 7.
- 2. Quality Management, Donna C S Summers, Prentice-Hall of India, Ch:3.
- 3. Quality in Totality: A Manager"s Guide To TQM and ISO 9000, ParagDiwan, Deep & Deep Publications, 1st Edition, 2000.
- 4. Quality Control and Total Quality Management P.L. Jain-Tata McGraw-Hill (2006) Total Quality Management Bester field Pearson Education, Ch:5.
- 5. Industrial Hygiene and Chemical Safety, M H Fulekar, Ch:9, Ch:11 & Ch:15.
- 6. Safety and Hazards Management in Chemical Industries, M N Vyas, Atlantic Publisher, Ch:4, Ch:5 & Ch:19.
- 7. Staff, World Health Organization (2009) Handbook: Good Laboratory Practice (GLP) 13. OECD Principles of Good Laboratory Practice (as revised in 1997)". OECD Environmental Health and Safety Publications.OECD. 1. 1998.
- 8. Klimisch, HJ; Andreae, M; Tillmann, U (1997). "A systematic approach for evaluating the quality of experimental toxicological and eco-toxicological data". doi:10.1006/rtph.1996.1076. PMID 9056496.

Unit III

- 1. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th Edition, Harcourt Asia Publisher. Chapter 6, 7.
- 2. H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrumental Methods of Analysis,6 th Edition, CBS Publisher. Chapter 2.
- 3. R. D. Braun, Introduction to Instrumental Analysis, McGraw Hill Publisher. Chapter 8.
- 4. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5 th Edition, Harcourt Asia Publisher. Chapter 13, 14.
- 5. H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrumental Methods of Analysis,6 th Edition, CBS Publisher. Chapter 2.
- 6. R. D. Braun, Introduction to Instrumental Analysis, McGraw Hill Publisher. Chapter 5.
- 7. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5 th Edition, McGraw Hill Publisher, Chapter 3.

- 8. M. Ito, The effect of temperature on ultraviolet absorption spectra and its relation to hydrogen bonding, J. Mol. Spectrosc. 4 (1960) 106-124.
- 9. A. J. Somnessa, The effect of temperature on the visible absorption band of iodine inseveral solvents, Spectrochim. Acta. Part A: Molecular Spectroscopy, 33 (1977) 525-528.
- 10. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5 th Edition, Harcourt Asia Publisher. Chapter 16, 17.
- 11. R. D. Braun, Introduction to Instrumental Analysis, McGraw Hill Publisher. Chapter 12
- 12. Z. M. Khoshhesab (2012). Infrared Spectroscopy- Materials Science, Engineering and Technology. Prof. TheophanidesTheophile (Ed.). ISBN: 978-953- 51-0537- 4, InTech,(open access)

Unit IV

- 1. Introduction to instrumental methods of analysis by Robert D. Braun, Mc. Graw Hill (1987): Chapter 27
- 2. Thermal Analysis-theory and applications by R. T. Sane, Ghadge, Quest Publications
- 3. Instrumental methods of analysis, 7 th Edition, Willard, Merrit, Dean: Chapter 25
- 4. Instrumental Analysis, 5 th Edition, Skoog, Holler and Nieman: Chapter 31
- 5. Quantitative Chemical Analysis, 6 th Edition, Vogel: Chapter 12
- 6. Analytical Chemistry by Open Learning: Thermal Methods by James W. Dodd & Enneth H. Tonge
- 7. Instrumental methods of analysis, 7 th Edition, Willard, Merrit, Dean: Chapter 26
- 8. Instrumental Analysis, 5th Edition, Skoog, Holler and Nieman: Chapter 33
- 9. Introduction to instrumental methods of analysis by Robert D. Braun, Mc. GrawHill (1987): Chapter 28
- 10. Environmental toxicology Kees van Gestel, Vrije Universiteit, Amsterdam
- 11. Environmental Toxicology III, by V. Popov, Wessex Institute of Technology, UK; C.A. Brebbia, Wessex Institute of Technology, UK

Analytical Chemistry Practical

Course Description		
Semester	I	
Course Name	Analytical Chemistry	
Course Code	PSC1ACP	
Eligibility for Course	T. Y BSc (Chemistry)	
Credit	2	
Hours	30	

Sr. No	COs	Bloom Taxonomy
No		Level (BLT)
CO1	Demonstrate the titration skills for the analysis of samples of	Apply
	a diverse variety	
CO2	Apply the statistical methods for data analysis Ap	
CO3	Analyze the measured data based on Chemical principles Analyse	
CO4	Measure the characteristics of ion exchange resins Evaluate	

Unit	Course Description	
1.	To carry out assay of the sodium chloride injection by Volhard's	4
	method.	
2.	a) Statistical method: Application of Q test, t test to the data obtained	4

	for calibration of 5 mL pipette.		
	b) Determine mean, deviation, Q value and t value using MS-EXCEL software		
3.	To determine (a) the ion exchange capacity (b) exchange efficiency of the given cation exchange resin.	4	
4.	To determine amount of Cr(III) and Fe(II) individually in a mixture of the two by titration with EDTA.	4	
5.	To determine the breakthrough capacity of a cation exchange resin.		
6.	To determine the Mg (titrimetrically) and Al (gravimetrically) content of a Magnelium alloy by titration with EDTA.	4	
7.	To determine amount of Cu(II) present in the given solution containing a mixture of Cu(II) and Fe(II).	4	
8.	To determine number of nitro groups in the given compound using TiCl ₃ .	4	
9.	Separation of amino acids in a mixture by TLC using Ninhydrin (Demonstration)	4	

References:

- 1. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by A. I. Vogels, 3rd Ed. ELBS (1964)
- 2. Vogel's textbook of quantitative chemical analysis, Sixth Ed. Mendham, Denny, Barnes, Thomas, Pearson education
- 3. Standard methods of chemical analysis, F. J. Welcher
- 4. Standard Instrumental methods of Chemical Analysis, F. J. Welcher
- 5. W. W. Scott. "Standard methods of Chemical Analysis", Vol. I, Van Nostr and Company, Inc., 1939.
- 6. E.B.Sandell and H.Onishi, "Spectrophotometric Determination of Traces of Metals", Part-II, 4th Ed., A Wiley Interscience Publication, New York, 1978.

Course Description (Elective-I)	
Semester	I
Course Name	Physical Chemistry-I
Course Code	PSC1PC1
Eligibility for Course	T.Y.B.Sc. (Chemistry)
Credit	2
Hours	30

Course Objectives

- 4. To develop laboratory competence in relating physical aspects in chemistry
- 5. To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment, and modern instrumentation.
- 6. To provide the students with sound preparation for requirement of modern industry and provide competency in basic academic research as well as a cohesive, clearly structured overview of Chemistry

Course Outcomes

Sr.	Course Outcomes	Bloom
No		Taxonomy
		Level (BLT)
CO1	Prove Maxwell relations and its significance and applications to	Understand
	ideal gases, Joule Thomson experiment, Joule Thomson coefficient	
	and inversion temperature. Apply Third law of Thermodynamics to	
	find out absolute entropy	
CO2	Make use of quantum mechanics for Particle waves and	Apply
	Schrödinger wave equation, wave functions, properties of wave	
	functions, Normalization of wave functions, orthogonality of wave	
	functions. Particle in a one, two- and three-dimensional box	
CO3	Define, understand basic terms of Chemical Dynamics i.e. rate	Evaluate
	constant, order of reaction, molecularity of reaction also compare	
	Composite Reactions and Polymerization reactions	
CO4	Make use of of Colloids and Surface Phenomena in daily	Apply
	applications	- 1 0

Unit	Course Description	
1.	Thermodynamics-I	
	1.1. State function and exact differentials. Maxwell equations, Maxwell thermodynamic Relations; its significance and applications to ideal gases, Joule Thomson experiment, Joule Thomson coefficient, inversion temperature, Joule Thomson coefficient in terms of van der Waals constants. [8L]	15
	1.2. Third law of Thermodynamics, Entropy change for a phase transition, absolute entropies, determination of absolute entropies in terms of heat capacity, standard molar entropies and their dependence on molecular mass and molecular structure, residual entropy. [7L]	
2.	Quantum Chemistry	
	 2.1. Classical Mechanics, failure of classical mechanics: Need for Quantum Mechanics. 2.2. Particle waves and Schrödinger wave equation, wave functions, properties of wave functions, Normalization of wave functions, orthogonality of wave functions. 2.3. Operators and their algebra, linear and Hermitian operators, operators for the dynamic variables of a system such as, position, linear momentum, angular momentum, total energy, eigen functions, eigen values and eigen value equation, Schrödinger wave equation as the eigen value equation of the Hamiltonian operator, average value and the expectation value of a dynamic variable of the system, Postulates of Quantum Mechanics, Schrödinger"s Time independent wave equation from Schrödinger"s time dependent wave equation. 2.4. Application of quantum mechanics to the following systems: a) Free particle, wave function and energy of a free particle. b) Particle in a one, two and three dimensional box, separation of variables, Expression for the wave function of the system, expression for the energy of the system, concept of quantization, introduction of quantum number, degeneracy of the energy levels. 	15

c) Harmonic oscillator, approximate solution of the equation, Hermite polynomials, expression for wave function, expression for energy, use of the recursion formula.

Course Description (Elective-II)		
Semester	I	
Course Name	Physical Chemistry-II	
Course Code	PSC1PC1	
Eligibility for Course	T.Y.B.Sc. (Chemistry)	
Credit	2	
Hours	30	

Course Outcomes

Sr.	Course Outcomes	Bloom
No		Taxonomy
		Level (BLT)
CO1	Define, understand basic terms of Chemical Dynamics i.e. rate	Evaluate
	constant, order of reaction, molecularity of reaction also compare	
	Composite Reactions and Polymerization reactions	
CO2	Make use of of Colloids and Surface Phenomena in daily	Apply
	applications	

1.	Chemical Dynamics-I	Hours
	3.1. Composite Reactions:	15
	Recapitulation: Rate laws, Differential rate equations Consecutive	
	reactions,	
	Steady state Approximation, rate determining steps, Microscopic	
	Reversibility and Detailed Balanced Chain reactions-chain initiation	
	processes. Some inorganic mechanisms: formation and decomposition	
	of phosgene, decomposition of ozone, Reaction between Hydrogen and	
	Bromine and some general examples Organic Decompositions:	
	Decomposition of ethane, decomposition of acetaldehyde Gas phase	
	combustion: Reaction between hydrogen and oxygen, Semenov -	
	Hinshelwood and Thompson mechanism, Explosion limits and factors	
	affecting explosion limits.	
	3.2. Polymerization reactions: Kinetics of stepwise polymerization,	
	Calculation of degree of polymerization for stepwise reaction. Kinetics	
	of free radical chain polymerization, Kinetic chain length and estimation	
	of average no of monomer units in the polymer produced by chain	
	polymerization.	
	3.3. Reaction in Gas Phase	
	Unimolecular Reactions: Lindeman-Hinshelwood theory, Rice-	
	Ramsperger-Kasssel (RRK) theory, Rice-Ramsperger-Kassel Marcus	
	(RRKM) theory.	
2.	Colloids and Surface Phenomena	
	Colloidal Systems-Sols, Lyophilic and lyophobic sols, properties of	15
	sols, coagulation. Sols of surface-active reagents, surface tension and	
	surfactants, electrical phenomena at interfaces including electrokinetic	
	effects, micelles, reverse micelles, solubilization.	
	Thermodynamics of micellization, critical micelle concentration, factors	
	affecting critical micelle concentration (cmc), experimental methods of	

cmc determination, Micellar catalysis. Adsorption, adsorption isotherms, methods for determining surface structure and composition, BET equation, surface area determination,

Gibbs adsorption equation and its verification. Application of photoelectron spectroscopy, ESCA and Auger spectroscopy to the study of surfaces.

Numerical Problems

References

- 1. Peter Atkins and Julio de Paula, Atkin"s Physical Chemistry, 7th Edn., Oxford University Press, 2002.
- 2. K.J. Laidler and J.H. Meiser, Physical Chemistry, 2nd Ed., CBS Publishers and Distributors, New Delhi, 1999.
- 3. Robert J. Silby and Robert A. Alberty, Physical Chemistry, 3rd Edn., John Wiley and Sons (Asia) Pte.Ltd., 2002.
- 4. Ira R. Levine, Physical Chemistry, 5th Edn., Tata McGraw-Hill New Delhi, 2002.
- 5. G.W. Castellan, Physical Chemistry, 3rd Edn., Narosa Publishing House, New Delhi, 1983.
- 6. S. Glasstone, Text Book of Physical Chemistry, 2nd Edn., McMillan and Co. Ltd., London, 1962
- 7. B.K. Sen, Quantum Chemistry including Spectroscopy, Kalyani Publishers, 2003.
- 8. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, 1994.
- 9. R.K. Prasad, Quantum Chemistry, 2nd Edn., New Age International Publishers, 2000.
- 10. S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.
- 11. W.G. Davis, Introduction to Chemical Thermodynamics A Non Calculus Approach, Saunders, Philadelphia, 19772.
- 12. Peter A. Rock, Chemical Thermodynamics, University Science Books, Oxford University Press, 1983.
- 13. Ira N. Levine, Quantum Chemistry, 5th Edn., Pearson Education (Singapore) Pte.Ltd., Indian Branch, New Delhi, 2000.
- 14. Thomas Engel and Philip Reid, Physical Chemistry, 3rd Edn., Pearson Education Limited 2013.
- 15. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1st Edn., 1992. 16. Bockris, John O'M., Reddy, Amulya K.N., Gamboa-Aldeco, Maria E., Modern Electrochemistry, 2A, Plenum Publishers, 1998.
- 17. Physical Chemistry by Gurtu and Gurtu

18. A Text book of Physical Chemistry by K L kapoorVol5 , 2nd Edn

Physical Chemistry Practical

Course Description	
Semester	I
Course Name	Physical Chemistry
Course Code	PSC1PCP
Eligibility for Course	T.Y. B.Sc. (Chemistry)
Credit	2
Hours	30

After successful completion of this course students will be able to

Sr. No.	COs	Bloom Taxonomy Level (BLT)
	Know the principles of different instruments like	Understand
	Potentiometry, Conductometry, pH Metry.	
CO2	Determine the heat of solution of sparingly soluble acid and	Apply
	identify the reaction between acetone and iodine.	

Sr. No.	Course Description	Hrs
1.	To determine the heat of solution (ΔH) of a sparingly soluble acid	4
	(benzoic /salicylic acid) from solubility measurement at three	
	different temperature.	
2.	To study the variation of calcium sulphate with ionic strength and	4
	hence determine the thermodynamic solubility product of CaSO ₄ at room temperature.	
3.	To investigate the reaction between acetone and iodine. Or	4
	Kinetics of reaction between bromate and iodide. (New expt.)	
4.	To study the variation in the solubility of Ca(OH)2 in presence of	4
	NaOH and hence to determine the solubility product of Ca(OH) ₂ at	
	room temperature.	
5.	Graph Plotting of mathematical functions –linear, exponential and	4
	trigonometry and identify whether functions are acceptable or non-acceptable?	
6.	To determine the mean ionic activity coefficient of an electrolyte by	4
	e.m.f. measurement.	
7.	To study the effect of substituent on the dissociation constant of acetic	4
	acid conductometrically.	
8.	To determine pKa values of phosphoric acid by potentiometric	4
	titration with sodium hydroxide using glass electrode.	
9.	To verify Ostwald"s dilution law and to determine the dissociation	4
	constant of a weak mono-basic acid conductometrically.	
10.	Determination of dissociation constant of dibasic acid.	

References:

1 Practical Physical Chemistry, B. Viswanathan and P.S. Raghavan, Viva Books Private Limited, 2005.

- 2 Practical Physical Chemistry, A.M. James and F.E. Prichard, 3rd Edn., Longman Group Ltd., 1974.
- 3 Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age International Publishers, 2001.

Research Methodology

Course Description	Minor
Semester	I
Course Name	Research Methodology
Course Code	PSC1RM1
Eligibility for the Course	B.Sc. Chemistry
Credit	4
Hours	60

Course Outcomes

Sr. No.	Course Outcomes	Bloom
		Taxonomy Level (BTL)
CO1	Explain the importance of different types of print and digital resources for gap analysis and data collection.	Understand
CO2	Design/propose methodologies preferably with green and safe approach to conduct research	Create
CO3	Anayze scientific data by statistical and graphical methods.	Analyse
CO4	Apply skills of chemical safety & ethical handling of chemicals	Apply

Unit	Course Description	Hrs
1	Research and Literature Survey	
	Scientific Research: (5L)	15
	Research: Definition, types, Need of research. Identification of the problem,	
	formulating the objectives, Hypotheses, Research Methods and Methodology	
	Selecting & defining Research problem, Research Process, Research Design: preparing Research design (experimental or otherwise), Actual investigation,	
	Data analysis and interpretation.	
	Literature survey: (5L)	
	Need for Literature Survey, References,	
	Sources of literature: Primary, Secondary and Tertiary sources, Journals:	
	Peer-reviewed, indexed, UGC-care listed, predatory, fake journals	
	Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance	
	Index, Author Index, Formula Index, and other Indices with examples	
	Digital Web sources: [5L]	

	E-journals, Journal access, TOC alerts, Hot articles, Citation Index, Impact	
	factor, H-index, E-consortium, UGC infonet, E-books, Shodhganga,	
	Researchgate, Internet discussion groups and communities, Blogs, preprint	
	servers, Search engines, Scirus, Google Scholar, ChemIndustry, Wiki-	
	databases, ChemSpider, Science Direct, SciFinder, Scopus.	
2	Data Analysis	
	The Investigative Approach: Making and recording Measurements, SI units	15
	and their use, Scientific methods and design of experiments.	
	Analysis and Presentation of Data: Descriptive statistics, choosing and using	
	statistical tests, Chemometrics, Analysis of Variance (ANOVA), SPSS,	
	Correlation and regression, curve fitting, fitting of linear equations, simple	
	linear cases, weighted linear case, analysis of residuals, general polynomial	
	fitting, linearizing transformations, exponential function fit, r and its abuse,	
	basic aspects of multiple linear regression analysis. (15L)	
3	Methods of Scientific Research and Writing	
	Scientific papers: Reporting practical and project work, writing literature	15
	surveys and reviews, organizing a poster display, giving an oral presentation.	
	Writing Scientific Papers: Justification for scientific contributions,	
	bibliography, description of methods, conclusions, the need for illustration,	
	style, publications of scientific work, writing ethics, avoiding plagiarism (15L)	
4	Chemical Safety & Ethical Handling of Chemicals	
	Safe working procedure and protective environment, protective apparel,	15
	emergency procedure, first aid, laboratory ventilation, safe storage and use of	
	hazardous chemicals, procedure for working with substances that pose	
	hazards, flammable or explosive hazards, procedures for working with gases	
	at pressures above or below atmospheric pressure, safe storage and disposal of	
	waste chemicals, recovery, recycling and reuse of laboratory chemicals,	
	procedure for laboratory disposal of explosives, identification, verification and	
	segregation of laboratory waste, disposal of chemicals in the sanitary sewer	
	system, incineration and transportation of hazardous chemicals. (15L)	

REFERENCES:

- 1. Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J., & Jones, A., (2011), *Practical skills in Chemistry*, 2nd Ed., Prentice Hall, Harlow.
- 2. Hibbert, D. B. & Gooding, J. J. (2006) *Data Analysis for Chemistry* OxfordUniversity Press.
- 3. Topping, J., (1984) Errors of Observation and their Treatment 4th Ed., Chapman Hill London.
- 4. Harris, D. C. (2007) *Quantative Chemical Analysis* 6th Ed., Freeman Chapters 3-5
- 5. Levie, R. De. (2001) *How to use Excel in Analytical Chemistry and in generalscientific data analysis* Cambridge University Press.
- 6. Chemical Safety matters IUPAC-IPCS, (1992) Cambridge University Press.

SEMESTER-II

Course Description	
Semester	II
Course Name	Inorganic Chemistry
Course Code	PSC2IC2
Eligibility for Course	T.Y.B.Sc.in Chemistry
Credit	4
Hours	60

Course Objectives:

- 1. To study and understand Photochemical Reactions, Ligand substitution reactions of octahedral and tetrahedral complexes, Redox reactions: inner and outer sphere mechanisms, stereochemistry of substitution reactions of octahedral complexes
- 2. To study and understand Organometallic Chemistry of Transition metals, Eighteen and sixteen electron rule, Structure and bonding on the basis of VBT and MOT in organometallic compounds.
- 3. To study and understand Toxicity of metallic species including case studies. Interaction of radiation in context with the environment: Sources and biological implication of radioactive materials.
- 4. To study concept of green chemistry, Biomass and biofuels.
- 5. To study and understand Bioinorganic Chemistry related to Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine- structure of metal active center and differences in mechanism of oxygen binding, Copper containing enzymes, Nitrogen fixation Metal ion transport and storage Medicinal applications of cis-platin and related compounds.

Course Outcomes

Sr.No.	After completing the course, Student will able to:	Bloom Taxonomy Level (BTL)
CO1	Recall Organometallic Chemistry of Transition metals, Eighteen and sixteen electron rules, Preparation and property's structure and bonding of the Organometallic compounds	Remember
CO2	Explain Photochemical Reactions, Ligand substitution reactions of: Octahedral complexes, Square planar complexes, trans-effect, its theories and applications. Redox reactions: inner and outer sphere mechanisms, stereochemistry of substitution reactions of octahedral complexes	Understand
CO3	Explain Bioinorganic Chemistry related to biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine- structure of metal active center and differences in mechanism of oxygen binding, Copper containing enzymes, Nitrogen fixation Metal ion transport and storage, Medicinal applications of cis-platin and related compounds.	Understand
CO4	Discuss the implication of toxic metallic species radioactive materials on environment and biological system using case studies.	Create

Unit	Course Description	Hrs
1.	Inorganic Reaction Mechanism:	15h
1.1	Photochemical Reactions:	
	Prompt and delayed reactions, Quantum yield, Recapitulation of	
	fluorescence and phosphorescence. Photochemical reactions by	
	irradiating at d-d and charge transfer bands.	
1.2	Ligand substitution reactions of:	
	<u>a)</u> Octahedral complexes without breaking of metal-ligand bond (Use of isotopiclabelling method)	
	b) Square planar complexes, trans-effect, its theories and applications. Mechanismand factors affecting these substitution reactions.	
1.3	Redox reactions: inner and outer sphere mechanisms, complimentary and non-complimentary reactions.	
1.4	Stereochemistry of substitution reactions of octahedral complexes.	
	(Isomerization andracemization reactions and applications.)	
2.	Organometallic Chemistry of Transition metals:	15h
2.1	Eighteen and sixteen electron rule and electron counting with examples.	

(a) Alkyl and aryl derivatives transition metal complexes (b) Carbenes and carbynes of Cr, Mo and W (c) Alkene derivatives of Pd and Pt (d) Alkyne derivatives of nickel (e) Allyl derivatives of nickel (f) Sandwich compounds of Fe, Cr and Half Sandwich compounds of Cr, Mo. 2.3 Basic organometallic reactions introduction: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry 3. Environmental Chemistry: 15h Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment.		-	,
(b) Carbenes and carbynes of Cr, Mo and W (c) Alkene derivatives of Pd and Pt (d) Alkyne derivatives of Pd and Pt (e) Allyl derivatives of nickel (f) Sandwich compounds of Fe, Cr and Half Sandwich compounds of Cr, Mo. 2.3 Basic organometallic reactions introduction: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry 3. Environmental Chemistry: 15h Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 2. Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. 3.1 Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cells proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Biolongial oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	2.2	Preparation and properties of the following compounds	
(c) Alkene derivatives of Pd and Pt (d) Alkyne derivatives of Pd and Pt (e) Allyl derivatives of inckel (f) Sandwich compounds of Fe, Cr and Half Sandwich compounds of Cr, Mo. 2.3 Basic organometallic reactions introduction: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry 3. Environmental Chemistry: 15 Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 2. Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. 3.1 Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:lonophores, transferrin, ferr		(a) Alkyl and aryl derivatives transition metal complexes	
(d) Alkyne derivatives of Pd and Pt (e) Allyl derivatives of nickel (f) Sandwich compounds of Fe, Cr and Half Sandwich compounds of Cr, Mo. Basic organometallic reactions introduction: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins		(b) Carbenes and carbynes of Cr, Mo and W	
(d) Alkyne derivatives of Pd and Pt (e) Allyl derivatives of nickel (f) Sandwich compounds of Fe, Cr and Half Sandwich compounds of Cr, Mo. Basic organometallic reactions introduction: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins		(c) Alkene derivatives of Pd and Pt	
(e) Allyl derivatives of nickel (f) Sandwich compounds of Fe, Cr and Half Sandwich compounds of Cr, Mo. 2.3 Basic organometallic reactions introduction: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry 3. Environmental Chemistry: 3. Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 3.2 Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. 3.3 Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4. Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and myoglobin: Cooperativity of oxygen activation by these enzymes. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4			
(f) Sandwich compounds of Fe, Cr and Half Sandwich compounds of Cr, Mo. Basic organometallic reactions introduction: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry 3. Environmental Chemistry: 15h Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 3.2 Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of monooxygenaeses, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal On transport and storage: Ionophores, transferrin, ferritin and metallothioni			
2.3 Basic organometallic reactions introduction: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry 3. Environmental Chemistry: 3.1 Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 3.2 Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. 3.3 Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cells- Irs applications in diagnosis and treatment, Effect of radiation on cells proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine- structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono- oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono- oxygenaess, and oxidases- structure of the metal center and mechanism of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen			
Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry 3. Environmental Chemistry: 3.1 Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 3.2 Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. 3.3 Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity, Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
insertion, extrusion, oxidative addition, reductive elimination mechanism and stereochemistry 3. Environmental Chemistry: 3.1 Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 3.2 Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and myoglobin: Cooperativity of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	2.3		
and stereochemistry 3. Environmental Chemistry: 3.1 Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 3.2 Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. 3.3 Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4. Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
3.1 Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 3.2 Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. 3.3 Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4. Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins		insertion, extrusion, oxidative addition, reductive elimination mechanism	
Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins		and stereochemistry	
chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. 3.2 Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. 3.3 Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	3.	Environmental Chemistry:	15h
chromium, with respect to their sources, distribution, speciation, biochemical effects and toxicology, control and treatment. Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	3.1	Toxicity of metallic species: Mercury, lead, cadmium, arsenic, copper and	
effects and toxicology, control and treatment. Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
Case Studies: (a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. Interaction of radiation in context with the environment:Sources and biological implications in diagnosis and treatment, Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: Isbiological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage: Ionophores, transferrin, ferritin and metallothionins			
(a) Itai-itai disease for Cadmium toxicity, (b) Arsenic Poisoning in the Indo-Bangladesh region. 3.3 Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	3.2		
(b) Arsenic Poisoning in the Indo-Bangladesh region. Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
Interaction of radiation in context with the environment:Sources and biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4. Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it"s implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenases, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
biological implication of radioactive materials. Effect of low level radiation on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it"s implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	3.3		
on cells- Its applications in diagnosis and treatment, Effect of radiation on cell proliferation and cancer. 3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 15h Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it"s implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
cell proliferation and cancer. Green Chemistry: Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4. Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine- structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono- oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
3.4 Green Chemistry: Biomass and Biofuels: Issues of Ethanol,Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
Biomass and Biofuels: Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 15h Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it"s implications. 4.2 Activation of oxygen in biological system with examples of monooxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	3.1		
Issues of Ethanol, Biodiesel from Plant Oils and from AlgaeActivity. Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 15h Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it"s implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	3.4	· ·	
Bio-based Liquid Fuels and Chemicals, Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it"s implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
Recycling Carbon Dioxide—A Feedstock for the Production of Chemicals and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
and Liquid Fuels, Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine- structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it"s implications. 4.2 Activation of oxygen in biological system with examples of mono- oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins		<u> </u>	
Thermochemical Production of Fuels: Including Methanol and Hydrogen—Fuel of the Future. 4. Bioinorganic Chemistry: 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it"s implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
4. Bioinorganic Chemistry: 4. Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it is implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
 4. Bioinorganic Chemistry: 15h Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it"s implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins 		_	
 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it in implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins 		Hydrogen—Fuel of the Future.	
 4.1 Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine-structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it in implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins 	4.	Bioinorganic Chemistry:	15h
structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it is implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and it's implications. 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases-structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
oxygen affinity in hemoglobin and myoglobin and it implications. 4.2 Activation of oxygen in biological system with examples of mono- oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
 4.2 Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins 			
oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	4.2		
oxygen activation by these enzymes. 4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	4.4	· · · · · · · · · · · · · · · · · · ·	
4.3 Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
laccase: catalytic reactions and the structures of the metal binding site 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins	4.2		
 4.4 Nitrogen fixation-nitrogenase, hydrogenases 4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins 	4.3		
4.5 Metal ion transport and storage:Ionophores, transferrin, ferritin and metallothionins			
metallothionins			
	4.5		
4.6 Medicinal applications of cis-platin and related compounds			
	4.6	Medicinal applications of cis-platin and related compounds	

References

UNIT-I

- 1. P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, Inorganic Chemistry, 5thEd., Oxford University Press, 2010.
- 2. D. Banerjea, Coordination Chemistry, Tata McGraw Hill, 1993.
- 3. W. H. Malik, G. D./Tuli and R. D. Madan, Selected Topics in Inorganic Chemistry, 8thEd., S. Chand & Company ltd.
- 4. M. L. Tobe and J. Burgess, Inorganic Reaction Mechanism, Longman, 1999.
- 5. S. Asperger, Chemical kinetics and Inorganic Reaction Mechanism, 2nd Ed., Kluwer Academic/ Plenum Publishers, 2002
- 6. Gurdeep Raj, Advanced Inorganic Chemistry-Vol.II, 12th Edition, Goel publishing house, 2012.
- 7. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, MilestonePublishers, 2013-2014.
- 8. F. Basalo and R. G. Pearson, Mechanism of Inorganic Reactions, 2nd Ed., Wiley, 1967.
- 9. R. Gopalan and V. Ramlingam, Concise Coordination chemistry, Vikas Publishing housePvt Ltd., 2001.
- 10. Inorganic reaction mechanism by Jorden & inorganic reaction mechanism by Basolo Pearson
- 11. Robert B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems, 3rdEd., Oxford University Press 2008.

Unit II

- 1. D. Banerjea, Coordination chemistry. Tata McGrew Hill, New Delhi, 1993.
- 2. R.C Mehrotra and A.Singh, Organometallic Chemistry- A unified Approach, 2nded, NewAge International Pvt Ltd, 2000.
- 3. R.H Crabtree, The Organometallic Chemistry of the Transition Metals, 5th edition, WileyInternational Pvt, Ltd 2000.
- 4. B.Doughlas, D.H McDaniel and J.J Alexander. Concepts and Models of Inorganic Chemistry, 2nd edition, John Wiley and Sons. 1983.
- 5. Organometallic Chemistry by G.S Sodhi. Ane Books Pvt Ltd.
- 6. G. Miessler and D. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education, 2004
- 7. Organometallic chemistry by B.D.Gupta.
- 8. Organometallic chemistry by "Crabtree

Unit III

- 1. Environmental Chemistry 5th edition, Colin Baird Michael Cann, W. H. Freeman and Company, New York, 2012.
- 2. Environmental Chemistry 7th edition, Stanley E. Manahan, CRC Press Publishers,
- 3. Environmental Contaminants, Daniel A. Vallero, ISBN: 0-12-710057-1, Elsevier Inc., 2004.
- 4. Environmental Science 13th edition, G. Tyler Miller Jr. and Scott E. Spoolman, ISBN-10:0-495-56016-2, Brooks/Cole, Cengage Learning, 2010.
- 5. Fundamentals of Environmental and Toxicological Chemistry 4th edition, Stanley E.

Manahan, ISBN: 978-1-4665-5317-0, CRC Press Taylor & Francis Group, 2013.

- 6. Living in the Environment 17th edition, G. Tyler Miller Jr. and Scott E. Spoolman, ISBN-10: 0-538-49414-X, Brooks/Cole, Cengage Learning, 2011
- 7. Poisoning and Toxicology Handbook, Jerrold B. Leikin, Frank P. Paloucek, ISBN: 1-4200-4479-6, Informa Healthcare USA, Inc.
- 8. Casarett and Doull"s Toxicology- The Basic Science of Poisons 6th edition, McGraw-Hill,2001.

Unit IV

- 1. R. W. Hay, Bioinorganic Chemistry, Ellis Harwood, England, 1984.
- 2. I. Bertini, H.B.Gray, S. J. Lippard and J.S. Valentine, Bioinorganic Chemistry, First SouthIndian Edition, Viva Books, New Delhi, 1998.
- 3. J. A. Cowan, Inorganic Biochemistry-An introduction, VCH Publication, 1993.
- 4. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry, University SciencePublications, Mill Valley, Caligronic, 1994.
- 5. G.N. Mukherjee and A. Das, Elements of Bioinorganic Chemistry, Dhuri& Sons, Calcutta, 1988.
- 6. J.Chem. Educ. (Special issue), Nov, 1985.
- 7. E.Frienden, J.Chem. Educ., 1985, 62.
- 8. Robert R.Crechton, Biological Inorganic Chemistry An Introduction, Elsevier
- 9. J. R. Frausto da Silva and R. J. P. Williams The Biological Chemistry of the Elements, Clarendon Press, Oxford, 1991.
- 10. JM. D. Yudkin and R. E. Offord A Guidebook to Biochemistry, Cambridge UniversityPress, 1980.

Course Description		
Semester	II	
Course Name	Inorganic Chemistry Practical	
Course Code	PSC2ICP	
Eligibility for Course	T.Y.B. Sc.in Chemistry	
Credit	2	
Hours	30	

Course Outcomes

COs.	After completing the course, Students will be able to:	Bloom Taxonomy Level (BTL)
CO1	Analyse ores and alloys using volumetric and gravimetric analysis.	Analyse
CO2	Estimate percentage of metals in the ore and alloy	Evaluate
CO3	Apply the potentiometric method for redox titrations of Fe, Cu etc.	Apply

Ores and Alloys

- 1) Analysis of Devarda"s alloy
- 2) Analysis of Cu Ni alloy
- 3) Analysis of Tin Solder alloy
- 4) Analysis of Brass alloy

Instrumentation

- 1) Estimation of Copper using Iodometric method Potentiometrically.
- 2) Estimation of Fe+3 solution using Ce(IV) ions Potentiometrically

Reference:

- 1. Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur& Sons Pvt Ltd
- 2. The Synthesis and Characterization of Inorganic Compounds by William L. Jolly 3. Inorganic Chemistry Practical Under UGC Syllabus for M.Sc. in all India Universities By: DrDeepak Pant

Course Description			
Semester	II		
Course Name	Organic Chemistry		
Course Code	PSC2OC2		
Eligibility for Course	T. Y BSc (Chemistry)		
Credit	2		
Hours	60		

Course Outcomes

Sr	COs	Bloom
No.		Taxonomy Level
		(BLT)
CO1	Explain the Generation of carbanion, enolate, enamine with their alkylation & acylation reaction and name reactions with their mechanism.	Understand
CO2	Illustrate mechanism, stereochemistry, applications and importance of name reactions and rearrangements.	Understand
CO3	Explain the role of reagents in organic synthesis.	Analyse
CO4	Interpret the structure of organic compounds using combined of spectral techniques.	create

Unit	Course Description	Hrs
1	1.1. Alkylation of Nucleophilic Carbon Intermediates:	15
	1.1.1. Generation of carbanion, kinetic and thermodynamic enolate	
	formation, Regioselectivity in enolate formation, alkylation of enolates.	
	1.1.2. Generation and alkylation of dianion, medium effects in the alkylation	
	of enolates, oxygen versus carbon as the site of alkylation. 1.1.3. Alkylation	
	of aldehydes, ketones, esters. 1.1.4. Nitrogen analogs of enols and enolates-	
	Enamines and Imines anions, alkylation of enamines and imines. 1.1.5.	

	Alkylation of carbon nucleophiles by conjugate addition (Michael reaction). 1.2. Reaction of carbon nucleophiles with carbonyl groups: 1.2.1. Mechanism of Acid and base catalyzed Aldol condensation, Mixed Aldol condensation with aromatic aldehydes, regiochemistry in mixed reactions of aliphatic aldehydes and ketones, intramolecular Aldol reaction and Robinson annulation. 1.2.2. Addition reactions with amines and iminium ions; Mannich reaction. 1.2.3. Amine catalyzed condensation reaction: Knoevenagel reaction. 1.2.4. Acylation of carbanions. Asymmetric methodology with enolates and Enamines	
2	Mechanisms, stereochemistry (if applicable) and applications of the following: 2.1. Reactions: Baylis-Hilman reaction, McMurry Coupling, Corey-Fuchs reaction, Nef reaction, Passerini reaction. 2.2. Concerted rearrangements: Hofmann, Curtius, Lossen, Schmidt, Wolff, Bamberger Rearrangements. 2.3. Cationic rearrangements: Tiffeneau-Demjanov, Pummerer, Dienone-phenol, Rupe, Wagner-Meerwein. 2.4. Anionic rearrangements: Brook, Neber, Von Richter, Wittig, Benzylic acid Rearrangements, Payne.	15
3	 3.1 Elimination Reactions: E1,E2 E1CB, Stereochemistry of elimination, elimination Vs Substitution, Anti and Syn Elimination. Dehydrohalogenation, Dehalogenation, Dehydration, Hoffmann and Saytzeff elimination, Pyrolytic elimination. 3.2 Organometallic Chemistry Organolithium, Organomagnesium, Organozinc, Organocupper, 3.3 Introduction to Molecular Orbital Theory for Organic Chemistry: Molecular orbitals: Formation of σ- and π-MOs by using LCAO method. Formation of π MOs of ethylene, butadiene, 1, 3, 5-hexatriene, allylcation, anion and radical. Concept of nodal planes and energies of π-MOs 	15
4	 Spectroscopy: 4.1. Proton magnetic resonance spectroscopy: Chemical and magnetic equivalence, Chemical shift values and correlation for protons bonded to carbon and other nuclei as in alcohols, phenols, enols, carboxylic acids, amines, amides. Spin-spin coupling, Coupling constant (J), Factors affecting J, geminal, vicinal and long range coupling (allylic and aromatic). First order spectra. 4.2. 13C NMR spectroscopy: Theory and comparison with proton NMR, proton coupled and decoupled spectra, off-resonance decoupling. Factors influencing carbon shifts, correlation of chemical shifts of aliphatic, olefin, alkyne, aromatic and carbonyl carbons. 4.3. Mass spectrometry: Determination of molecular formula of organic compounds based on isotopic abundance and HRMS. Fragmentation pattern in various classes of organic compounds (including compounds containing hetero atoms), McLafferty rearrangement, Retro-Diels Alder reaction. 4.4. Structure determination involving individual or combined use of the above spectral techniques. 4.5. Applications of UV and IR spectroscopy: (8 L) 3.2.1. Ultraviolet spectroscopy: Recapitulation, UV spectra of dienes, conjugated polyenes (cyclic and acyclic), carbonyl and unsaturated carbonyl compounds, 	15

substituted aromatic compounds.

Factors affecting the position and intensity of UV bands — effect of conjugation, steric factor, pH, and solvent polarity. Calculation of absorption maxima for above classes of compounds by Woodward-Fieser rules (using Woodward-Fieser tables for values for substituents). 4.6. Infrared spectroscopy: Fundamental, overtone and combination bands, vibrational coupling, factors affecting vibrational frequency (atomic weight, conjugation, ring size, solvent and hydrogen bonding). Characteristic vibrational frequencies for alkanes, alkenes, alkynes, aromatics, alcohols, ethers, phenols, amines, nitriles and nitro compounds. Detailed study of vibrational frequencies of carbonyl compounds, aldehydes, ketones, esters, amides, acids, acid halides, anhydrides, lactones, lactams and conjugated carbonyl compounds.

Organic Chemistry Practical

Course Description		
Semester	II	
Course Name	Organic Chemistry	
Course Code	PSC2OCP	
Eligibility for Course	T.Y.B.Sc (Chemistry)	
Credit	2	
Hours	30	

Sr. No	COs	Bloom
		Taxonomy
		Level (BLT)
CO1	Identify the chemical type of components present in a binary mixture of an organic compound.	Apply
CO2	Apply skills in the separation and qualitative analysis of organic compounds of binary mixtures by microscale technique.	Apply
CO3	Make use of crystallization, sublimation and distillation for purification of the organic compounds.	Apply
CO4	Demonstrate the practical aspects in the preparation of the organic compounds derivatives.	Understand

Sr.	Course Description	Hrs
No.		
1	Separation of Binary mixture using micro-scale technique	30
	1. Separation of binary mixture using physical and chemical methods. 2.	
	Characterization of one of the components with the help of chemical	
	analysis and confirmation of the structure with the help of derivative	
	preparation and its physical constant. 3. Purification and determination	
	of mass and physical constant of the second component. The following	
	types are expected: (i) Water soluble/water insoluble solid and water	

insoluble solid, (ii) Non-volatile liquid-Non-volatile liquid (chemical separation) (iii) Water-insoluble solid-Non-volatile liquid.

- 1. Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford UniversityPress.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part A, page no. 713-769, and B, Plenum Press.
- 3. March"s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley.
- 4. Organic Chemistry, R.T. Morrison, R.N. Boyd and S.K. Bhattacharjee, Pearson Publication (7th Edition)
- 5. Advanced Organic Chemistry: Reactions and mechanism, B. Miller and R. Prasad, PearsonEducation.
- 6. Advanced Organic Chemistry: Reaction mechanisms, R. Bruckner, Academic Press.
- 7. Understanding Organic Reaction Mechanisms, Adams Jacobs, Cambridge University Press.
- 8. Writing Reaction Mechanism in organic chemistry, A. Miller, P.H. Solomons, Academic Press.
- 9. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Nelson Thornes.
- 10. Advanced Organic Chemistry: Reactions and mechanism, L.G. Wade, Jr., Maya Shankar Singh, Pearson Education.
- 11. Mechanism in Organic Chemistry, Peter Sykes, 6th
- 12. Molecular Orbital and Organic chemical reactions, Ian Fleming Reference Edition, Wiley
- 13. Introduction to Spectroscopy, Donald L. Pavia, Gary M. Lampman, George S. Kriz, Thomson Brooks.
- 14. Spectrometric Identification of Organic Compounds, R. Silverstein, G.C Bassler and T.C.Morrill, John Wiley and Sons.
- 15. Organic Spectroscopy, William Kemp, W.H. Freeman & Company.
- 16. Organic Spectroscopy-Principles and Applications, Jagmohan, Narosa Publication.
- 17. Organic Spectroscopy, V.R. Dani, Tata McGraw Hill Publishing Co.
- 18. Spectroscopy of Organic Compounds, P.S. Kalsi, New Age International Ltd.
- 19. Organic Reaction Mechanisms, V.K. Ahluwalia, R.K. Parasher, Alpha

ScienceInternational, 2011.

- 20. Reactions, Rearrangements and Reagents by S. N. Sanyal
- 21. Name Reactions, Jie Jack Li, Springer
- 22. Name Reactions and Reagents in Organic Synthesis, Bradford P. Mundy, M.G. Ellerd, and F.G. Favaloro, John Wiley & Sons.

Course Description		
Semester	II	
Course Name	Analytical Chemistry	
Course Code	PSC2AC1	
Eligibility for Course	T.Y.B.Sc (Chemistry)	
Credit	4	
Hours	60	

Course Outcomes

Sr.	COs	Bloom
No		Taxonomy
		Level (BLT)
CO1	Translate the theoretical principles of advanced separation	Understand
	techniques, spectroscopic techniques, radioanalytical techniques,	
	electroanalytical techniques into applications.	
CO2	Explain the working principles of surface analytical techniques	Understand
	such as SEM, STM, TEM, ESCA, Auger spectroscopy and ICP-	
	AES	
CO3	Compare the different ion sources and mass analyzers in mass	Analyze
	spectroscopy	
CO4	Determine the electrical quantities such as charge, current, potential	Evaluate
	using Electroanalytical methods	

Unit	Course Description	Hrs
1.	Chromatography	
1.	Chromatography 1.1 Recapitulation of basic concepts in chromatography: Classification of chromatographic methods, requirements of an ideal detector, types of detectors in LC and GC, comparative account of detectors with reference to their applications (LC and GC respectively), qualitative and quantitative analysis.[2 L] 1.2 Concept of plate and rate theories in chromatography: efficiency, resolution, selectivity and separation capability. Van Deemter equation and broadening of chromatographic peaks. Optimization of chromatographic conditions.[5 L] 1.3 Gas Chromatography: Instrumentation of GC with special reference to sample injection systems – split/splitless, column types, solid/ liquid	15
	stationary phases, column switching techniques, temperature programming, Thermionic and mass spectrometric detector, Applications.	
	[3 L]	

2.	1.4 High Performance Liquid Chromatography (HPLC): Normal phase and reversed phase with special reference to types of commercially available columns (Use of C8 and C18 columns). Diode array type and fluorescence detector, Applications of HPLC. Chiral and ion chromatography. [5 L] X-ray spectroscopy: principle, instrumentation and applications of X-ray fluorescence, absorption and diffraction spectroscopy. [4 L] 2.2 Mass spectrometry: recapitulation, instrumentation, ion sources for molecular studies, electron impact, field ionization, field absorption, chemical ionization and fast atom bombardment sources. Mass analyzers: Quadrupole, time of flight and ion trap. Applications. [6 L] 2.3 Radioanalytical Methods — recapitulation, isotope dilution method, introduction, principle, single dilution method, double dilution method and applications. [5 L]	15
3.	Surface Analytical Techniques	
	Introduction, Types of surface measurements: Photon probe technique, electron probe technique, Ion probe technique, Scanning probe microscopy 3.2 Electron probe techniques: 3.1.1 Scanning Electron Microscopy (SEM): Principle, Instrumentation and Application 3.1.2 Electron Spectroscopy (ESCA and Auger): Principle, instrumentation and Application 3.2 Atomic Spectroscopy [6 L] 3.2.1 Recapitulation: Flame AAS and furnace AAS Interferences - chemical and spectral, evaluation methods in AAS, qualitative and quantitative applications 3.2.2 AES: Principle of AES, Interferences Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES) – Introduction, Principle, Instrumentation, applications 3.2.3 Applications of AAS and AES in environmental analysis	15
4.	Electroanalytical Methods	
	(Numericals are Expected) 4.1 Ion selective potentiometry and Polarography: [10 L] Ion selective electrodes and their applications (solid state, precipitate, liquid –liquid, enzyme and gas sensing electrodes), ion selective field effect transistors, biocatalytic membrane electrodes and enzyme based biosensors. Polarography: Ilkovic equation, derivation starting with Cottrell equation, effect of complex formation on the polarographic waves. 4.2 Electrogravimetry: Introduction, principle, instrumentation, factors affecting the nature of the deposit, applications.[3 L] 4.3 Coulometry: Introduction, principle, instrumentation, coulometry at controlled potential and controlled current [2 L]	15

References:

Unit I

- 1. Instrumental Analysis, Skoog, Holler & Drouch
- 2 HPLC Practical and Industrial Applications, 2 nd Ed., Joel K. Swadesh, CRC Press

Unit II 1.Essentials of Nuclear Chemistry, H J Arnikar, New Age Publishers (2005) 2. Fundamentals of Radiochemistry D. D. Sood, A. V. R. Reddy and N. Ramamoorthy 3. Principles of Instrumental Analysis - Skoog, Holler and Nieman, 5th Edition, Ch: 12 4. Principles of Instrumental Analysis - Skoog, Holler and Nieman, 5th Edition, Ch: 20

Unit III

- 1. Instrumental Analysis by Douglas A. Skoog F. James Holler Crouch, Publisher: Cengage; Edition, (2003), ISBN-10: 8131505421, ISBN-13: 978-8131505427
- 2. Physical Principles of Electron Microscopy, An Introduction to TEM, SEM, and AEM
- 3. Authors: Ray F. Egerton, ISBN: 978-0- 387-25800- 3 (Print) 978-0- 387-26016- 7 (Online)
- 4. Modern techniques of surface science by D.P. Woodruff, T.A. Delchar, Cambridge Univ. Press, 1994.
- 5. Introduction to Scanning Tunneling Microscopy by C. J. Chen, Oxford University Press, NewYork, 1993.
- 6. 5. Transmission Electron Microscopy: A text book for Material Science, David B Williams and C., Barry Carter, Springer
- 7. Modern Spectroscopy, by J.M. Hollas, 3rd Edition (1996), John Wiley, New York
- 8. Principles of Instrumental Analysis Skoog, Holler, Nieman, 5th ed., Harcourt College Publishers, 1998.
- 9. Instrumental Analysis by Douglas A. Skoog F. James Holler Crouch, Publisher: Cengage; Edition (2003), ISBN10: 8131505421, ISBN-13: 978-8131505427

Unit IV

- 1. Principles of Instrumental Analysis Skoog, Holler, Nieman, 5th Edition, Harcourt College Publishers, 1998. Chapters 23, 24, 25.
- 2. Analytical Chemistry Principles John H Kennnedy, 2nd edition, Saunders College Publishing (1990).
- 3. Modern Analytical Chemistry David Harvey; McGraw Hill Higher education publishers, (2000).
- 4. Vogel's Text book of quantitative chemical analysis, 6th edition, Pearson Education Limited, (2007).
- 5. Electrochemical Methods Fundamentals and Applications, Allen J Bard and Larry R Faulkner, John Wiley and Sons, (1980).
- 6. Instrumental Methods of Analysis Willard, Merrit, Dean and Settle, 7th edition, CBS publishers.

Analytical Chemistry Practical

Course Description	
Semester	II
Course Name	Analytical Chemistry
Course Code	PSC2ACP
Eligibility for Course	T. Y. B.Sc (Chemistry)
Credit	2
Hours	30

Sr. No.	COs	Bloom
		Taxonomy
		Level (BLT)
CO1	Demonstrate the operational skills on the selected instruments	Understand
	and retrieve information	
CO2	Develop a sense of time management, safe use of chemicals	Apply
	and environmental safety	

Sr. No.	Course Description	Hrs
1	To determine percent purity of washing soda in terms of sodium carbonate pH metrically.	4
2	To determine amount of Ti (III) and Fe (II) in a mixture by titration with Ce (IV) potentiometrically.	4
3	To determine the amount of nitrite present in the given water sample colorimetrically.	4
4	To determine the amount of Fe (II) and Fe (III) in a mixture using 1,10-phenanthroline spectrophotometrically.	4
5	Simultaneous determination of Cr (VI) and Mn (VII) in a mixture spectrophotometrically.	4
6	To determine the percentage composition of HCl and H ₂ SO ₄ on weight basis in a mixture of two by conductometric titration with NaOH and BaCl ₂ .	
7	To determine amount of potassium in the given sample of fertilizers using flame photometer by standard addition method.	4
8	Separation of benzene and toluene using gas chromatography and determination of column resolution (Rs). (demonstration)	4

References

- 1. Quantitative Inorganic Analysis including Elementary Instrumental Analysis by A. I. Vogels, 3rd Ed. ELBS (1964)
- 2. Vogel's textbook of quantitative chemical analysis, Sixth Ed. Mendham, Denny, Barnes, Thomas, Pearson education
- 3. Standard methods of chemical analysis, F. J. Welcher
- 4. Standard Instrumental methods of Chemical Analysis, F. J. Welcher
- 5. W.W.Scott."Standard methods of Chemical Analysis", Vol.I, Van Nostrand Company, Inc., 1939.
- 6. E.B. Sandell and H.Onishi, "Spectrophotometric Determination of Traces of Metals", Part-II, 4th Ed., A Wiley Interscience Publication, New York, 1978

Course Description (Elective-I)	
Semester	II
Course Name	Physical Chemistry-I
Course Code	PSC2PC2

Eligibility for Course	T. Y BSc (Chemistry)
Credit	2
Hours	30

Course Outcomes

Sr. No	COs	Bloom Taxonomy Level (BLT)
CO1	Explain Bioenergetics, Real solutions and Fugacity of real gases also show graphical representations of BET isotherms	Apply
CO2	Prove expressions for the total wave function for 1s,2s, 2p and 3d orbitals of hydrogen and aapplication of the Schrödinger equation to two electron system	Evaluate

Unit	Course Description	Hrs
1.	Chemical Thermodynamics II	
	1.1. Fugacity of real gases, Determination of fugacity of real gases using graphical method and from equation of state. Equilibrium constant for real gases in terms of fugacity. Gibbs energy of mixing, entropy and enthalpy of mixing.	15
	 Real solutions: Chemical potential in non ideal solutions excess functions of non ideal solutions calculation of partial molar volume and partial molar enthalpy, Gibbs Duhem Margules equation. Thermodynamics of surfaces, Pressure difference across curved surface (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, BET isotherm (derivations expected). Bioenergetics: standard free energy change in biochemical reactions, exergonic, endergonic. Hydrolysis of ATP, synthesis of ATP from ADP. 	
2.	Quantum Chemistry	
	2.1. Rigid rotor, spherical coordinates Schrödinger wave equation in spherical coordinates, separation of the variables, the phi equation, wavefunction, quantum number, the theta equation, wave function, quantization of rotational energy, spherical harmonics. 2.2. Hydrogen atom, the two particle problem, separation of the energy as translational and potential, separation of variables, the R the q * and the f equations, solution of the equation, introduction of the four quantum numbers and their interdependence on the basis of the solutions of the three equations, total wave function, expression for the energy, probability density function, distances and energies in atomic units, radial and angular plots., points of maximum probability, expressions for the total wave function for 1s,2s, 2p and 3d orbitals of hydrogen. expression for the energy, probability density function, distances and energies in atomic units, radial and angular plots., points of maximum probability, expressions for the total wave function for 1s,2s, 2p and 3d orbitals of hydrogen. 2.3. Application of the Schrödinger equation to two electron system, limitations of the equation, need for the approximate solutions, methods of	15

obtaining the approximate solution of the Schrödinger wave equation.	
2.4. Hückel Molecular Orbitals theory for ethylene, 1,3-butadiene and	
benzene. (Derivation expected)	

Course Description (Elective-II)		
Semester	II	
Course Name	Physical Chemistry-II	
Course Code	PSC2PC2	
Eligibility for Course	T. Y BSc (Chemistry)	
Credit	2	
Hours	30	

Course Outcomes

After successful completion of this course students will be able to

Sr.	COs	Bloom
No		Taxonomy
		Level (BLT)
CO1	Explain terms involved in Chemical Kinetics and Molecular	Apply,
	Reaction Dynamics. Elementary Reactions in Solution, Kinetics of	Evaluate
	reactions catalysed by enzymes -Michaelis-Menten analysis,	
	Lineweaver-Burk and Eadie Analyses, Inhibition of Enzyme action.	
CO2	Apply Photochemistry to solve NET, SET GATE Problems.	Apply

1.	Chemical Kinetics and Molecular Reaction Dynamics	
	 3.1. Elementary Reactions in Solution:- Solvent Effects on reaction rates, Reactions between ions- influence of solvent Dielectric constant, influence of ionic strength, Linear free energy relationships Enzyme action 3.2. Kinetics of reactions catalysed by enzymes -Michaelis-Menten analysis, Lineweaver-Burk and Eadie Analyses. 3.3. Inhibition of Enzyme action: Competitive, Non competitive and Uncompetitive Inhibition. Effect of pH, Enzyme activation by metal ions, Regulatory enzymes. 3.4. Kinetics of reactions in the Solid State:- Factors affecting reactions in solids Rate laws for reactions in solid: The parabolic rate law, The first order rate Law, the contracting sphere rate law, Contracting area rate law, some examples of kinetic studies. 	15
2.	Photochemistry	
	 4.1: Absorption of light, laws of photochemistry, electronic structure of molecules, molecular orbital, electronically excited singlet states, designation based on multiplicity rule, construction of Jablonski diagram, electronic transition, Frank Condon principle, selection rules, intensity of absorption bands, nature of electronic spectra and primary process, photodissociation, pre-dissociation, 4.2 Photo physical phenomena: physical pathways of excited molecular system (radiative and non-radiative), prompt fluorescence, delayed fluorescence, and phosphorescence, fluorescence quenching: concentration quenching, collisional quenching, quenching by excimer and exciplex emission, fluorescence resonance energy transfer between photo-excited donor and acceptor systems. 	15

4.3. Stern-Volmer relation, critical energy transfer distances, energy transfer

efficiency, examples and applications in chemical analysis. Photochemical reactions, photo-oxidation, photoreduction, photo-dimerization, photoisomerization and photosensitized reactions. Photochemistry of environment: Greenhouse effect.

References:

- 1. Peter Atkins and Julio de Paula, Atkin"s Physical Chemistry, 7th Edn., Oxford University Press, 2002.
- 2. K.J. Laidler and J.H. Meiser, Physical Chemistry, 2nd Ed., CBS Publishers and Distributors, New Delhi, 1999.
- 3. Robert J. Silby and Robert A. Alberty, Physical Chemistry, 3rd Edn., John Wiley and Sons (Asia) Pte.Ltd., 2002.
- 4. Ira R. Levine, Physical Chemistry, 5th Edn., Tata McGraw-Hill New Delhi, 2002.
- 5. G.W. Castellan, Physical Chemistry, 3rd Edn., Narosa Publishing House, New Delhi, 1983.
- 6. S. Glasstone, Text Book of Physical Chemistry, 2nd Edn., McMillan and Co. Ltd., London, 1962.
- 7. Principles of Chemical Kinetics, 2nd Ed., James E. House, ELSEVIER, 2007.
- 8. B.K. Sen, Quantum Chemistry including Spectroscopy, Kalyani Publishers, 2003.
- 9. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, 1994.
- 10. R.K. Prasad, Quantum Chemistry, 2nd Edn., New Age International Publishers, 2000.
- 11. S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.
- 12. W.G. Davis, Introduction to Chemical Thermodynamics A Non Calculus Approach, Saunders, Philadelphia, 19772.
- 13. Peter A. Rock, Chemical Thermodynamics, University Science Books, Oxford University Press, 1983.
- 14. Ira N. Levine, Quantum Chemistry, 5th Edn., Pearson Education (Singapore) Pte.Ltd., Indian Branch, New Delhi, 2000.
- 15. Thomas Engel and Philip Reid, Physical Chemistry, 3rd Edn., Pearson Education Limited 2013.
- 16. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1st Edn., 1992.
- 17. Solid State Chemistry [An Introduction], 3rd Ed., Lesley E. Smart & Elaine A. Moore, Taylor & Francis, 2010.

- 18. The Physics and "Chemistry of Solids, Stephen Elliott, Willey India, 2010
- 19. Principles of the Solid State, H.V. Keer, New Age International Publishers, 2011.
- 20. Solid State Chemistry, D.K. Chakrabarty, New Age International Publishers, 1996.
- 21. Principles of physical Chemistry, Marrown and Prutton 5th edition
- 22. Essentials of Physical Chemistry, ArunBahl, B. S Bahl, G. D.Tulli , S Chand and Co. Ltd , 2012 Edition.
- 23. Introduction of Solids L.V Azaroff, Tata McGraw Hill.
- 24. A Text book of physical Chemistry; Applications of thermodynamics vol III, Mac Millan Publishers India Ltd ,2011
- 25. New directions in solid state Chemistry, C.N.R. Rao and J Gopalkrishnan , Cambridge University Press.

Physical Chemistry Practical

Course Description		
Semester	II	
Course Name	Physical Chemistry Practical	
Course Code	PSC2PCP	
Eligibility for Course	T.Y. B. Sc. (Chemistry)	
Credit	2	
Hours	30	

After successful completion of this course students will be able to

Sr. No	COs	Bloom Taxonomy Level (BLT)
CO1	Know principles of different instruments like Potentiometry, Conductometry, pH Metry and colorimeter	Understand
CO2	CO2 Make use of graphical representation to identify Shape of Orbitals.	

Sr. No.	Course Description	
1	Polar plots of atomic orbitals such as 1s, $2p_x & 3d_z^2$ orbitals by using angular part of hydrogen atom wave functions.	4
2	To study the influence of ionic strength on the base catalysed hydrolysis of ethyl acetate.	4
3	To study phase diagram of three component system water – chloroform/toluene - acetic acid.	4

4	To determine the rate constant of decomposition reaction of diacetone alcohol by dilatometric method.	4
5	Graph Plotting of mathematical functions —linear, exponential and trigonometry and identify whether functions are acceptable or non-acceptable?	4
6	To determine the formula of silver ammonia complex by potentiometric method. Determination of binary mixture of halides. (New expt.)	4
7	To determine CMC of sodium Lauryl Sulphate from measurement of conductivities at different concentrations.	
8	To determine Hammette constant of m- and p- amino benzoic acid/nitro benzoic acid by pH measurement.	
9	To determine the Michaelis – Menten's constant value (Km) of the enzyme Beta Amylase spectrophotometrically.	

References

- 1. Practical Physical Chemistry, B. Viswanathan and P.S. Raghavan, Viva Books Private Limited, 2005.
- 2. Practical Physical Chemistry, A.M. James and F.E. Prichard, 3rd Edn., Longman Group Ltd., 1974.
- 3. Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age International Publishers, 2001.

OJT

Course Description		
Semester	II	
Course Name	On Job Training	
Course Code		
Eligibility for Course	T.Y. B. Sc. (Chemistry)	
Credit	4	
Hours	60	

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC 'College with Potential for Excellence' Status Awarded by UGC 'Best College Award' by University of Mumbai

Programme: M.Sc.
Course: M.Sc.-II
Analytical Chemistry
Choice Based Credit System (60:40)
w.e.f. Academic Year 2023-2024

Syllabus

(Approved in the Academic Council Meeting

Held on June 27, 2023)

Sr. No.	Heading	Particulars	
1	Title of Course	M.ScII Analytical Chemistry	
2	2 Eligibility for Admission Passed from M.Sc. I		
3	Passing marks	Minimum D Grade or equivalent minimum marks for passing at the Graduation level.	
4	Ordinances/Regulations (if any)		
5	No. of Semesters	One year/Two semester	
6	Level	P.G. part-II	
7	Pattern	Semester (60:40)	
8	Status	Revised	
9	To be implemented from Academic year	2023-2024	

Name of BOS Chairman: Dr. B.V Jadhav Signature of BOS Chairman:

Preamble of the Syllabus:

Master of Science (M.Sc.) in Analytical chemistry is a post-graduate course of Department of chemistry, Changu Kana Thakur Arts, Commerce & Science College, New Panvel (Autonomous). The programme is envisioned to provide a focused, outcome-based syllabus at the postgraduate level with student-centric structure of the teaching-learning experiences. It engages students in the curriculum of their choice and prepare students for both academia and employability.

The new curriculum of M.Sc. II (Analytical Chemistry) offer courses in the various areas of analytical chemistry. All the courses are having defined objectives and Learning Outcomes, which will help prospective students in choosing the elective courses to broaden their skills in the field of chemistry and interdisciplinary areas.

The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. The courses also offers ample skills to pursue research as career in the field of chemistry and allied areas.

Department of Chemistry of Changu Kana Thakur Arts, Commerce and Science College hope the programme will create best analytical minds to meet the needs of society.

Objectives of the Course:

- 1. To develop laboratory competence related instrumental and non-instrumental analysis
- 2. To demonstrate the ability of critical thinking and data analysis.
- To provide the students with sound preparation for requirement of modern industry and provide competency in basic academic research as well as a cohesive, clearly structured overview of Chemistry

Course Outcomes

M.Sc. Part II Analytical Chemistry

Semester III

Paper 1: Theory

- **CO1.** Students will understand importance of GLP and their regulations.
- **CO2.** Students will understand theoretical aspects of sampling, pre-treatment and method validation.
- **CO3.** Students will learn the laboratory accreditation, its benefits and importance of ICH guidelines.
- **CO4.** Student will get knowledge of how to measure uncertainty in measurements, dealing with signal to noise ratio and legislator aspects of pharmaceutical industries.

Paper 1: Practical

- **CO1**: Students will learn the analysis of quality of various types of samples using instrumental methods of analysis.
- **CO2.** Students will learn graphical representation of the data.

Paper 2: Theory

- **CO1.** Student will help to understand the theoretical concepts of surface analytical techniques.
- **CO2.** Student will understand advanced spectroscopic techniques used for characterization of matter.
- CO3. Students will get detailed insights of advanced electroanalytical techniques.
- **CO4.** Student will find applications of chemiluminescence, ORD-CD, Photoacoustic spectroscopy in analytical chemistry.

Paper 2: Practical

- **CO1:** Students will learn the various advanced analytical techniques for analysis of different samples.
- CO2: Students will get knowledge of quality control methods and understand the importance of accuracy.

Paper 3: Theory

- **CO1.** Student will learn bioanalytical techniques of analysis.
- CO2. Student will understand the importance of Immunoassays and its applications.
- CO3. Student will get general idea about food processing, food preservation and determination of food contaminant etc.
 - **CO4.**Student will understand technique use in food packaging and food analysis.

Paper 3: Practical

- **CO1.** Students will perform practical based upon food analysis
- **CO2.** Students will understand data acquisition and analysis.

Paper 4: Theory

Paper 4 E1: Theory

- **CO1.** Student will learn different aspects of Chemistry of atmosphere and Environmental legislation.
- **CO2.** Student will understand the quality and requirement of potable water and bore well water.
- **CO3.** Student will study the details of sources and hazardous of soil pollutant and monitoring of air pollution.
- **CO4.** Student will do the detail study of control of pollution through Green Chemistry.

Paper 4 E2: Theory

- **CO1.** Student will get general idea regarding the pharmaceutical analysis and quality control methods of pharmaceutical industry.
- **CO2.** Student will know the details of drug analysis on the basis of functional groups and other factors.
- **CO3.**Student will understand the applications of analytical chemistry in forensic science.
- **CO4.** Student will learn the various aspects of cosmetic industry and analysis of different type cosmetics.

Paper 4: Practical

- **CO1.** Students will perform the practical based on estimations of drugs by non-aqueous titration.
- CO2. Students will perform the practical based on the analysis of water sample.

Semester IV

Paper 1: Theory

- **CO1.**Students will get detailed insights of modern chromatographic techniques for separation of miteon the basis of charge, size, and affinity of composition.
- **CO2.** Student will learn details of various separation processes.
- **CO3.** Student will study the separation, analysis and standardization of herbal based products.
- **CO4.**Student will understand the concept of electrophoresis in analysis and basics of nanotechnology.

Paper 1: Practical

CO1. Student will understand the use of various instrumental methods for the analysis of different samples.

Paper 2: Theory

- **CO1.** Student will do the detail study of principle, instrumentation and applications of NMR spectroscopy.
- **CO2.** Student will understand the detail concept of mass spectroscopy and Raman spectroscopy.
- **CO3.** Student will learn principle and interfacing of radio analytical techniques and hyphenated thermal methods
- **CO4.** Student will know the detail concept of hyphenated techniques including GC-MS, GC-IR, LC-MS, and HPLC-MS etc.

Paper 2: Practical

CO1.Student will able to do Interpretation of data using various advanced techniques.

CO2. Student will able to do Interpretation of spectra of NMR, Mass, IR, UV visible.

Paper 3: Theory

- **CO1.** Student will learn the different aspects of effluent treatment.
- CO2. Student will understand steps involved in solid waste management.
- **CO3.** Student will get an idea about classifications and applications of plastics, polymer, paints and pigments and their environmental impact.
- CO4. Student will study metallurgical analysis.

Paper 3: Practical

CO1. Students will learn quantitative estimation of various types of metallurgical samples.

Paper 4: Theory

Paper 4E1: Theory

- **CO1.** Student will learn about details intellectual property.
- **CO2.**Student will get knowledge of intellectual property rights (IPR).
- CO3. Student will understand concepts in cheminformatics.
- CO4. Student will learn about industrial designing and traits in it.

Paper 4E2: Theory

- **CO1.** Student will learn every aspect of publication of research paper such as terms associated with journals, referencing and library resources.
- **CO2.** Student will get conversant with the methods of data analysis and various softwares employed for it.
- CO3. Student will get knowledge of actual writing scientific papers.
- **CO4.** Student will get information of the safety and ethical handling of chemicals.

Paper 4: Practical

- **CO1.** Student will actually get involved in research work.
- CO2. Student will understand the analysis of data generated by their research work.
- **CO3.** Student will learn how to present research work.

M.Sc. Analytical Chemistry

For the subject of analytical chemistry there shall be four papers for 60 lectures each comprising of four units of 15 L each.

Semester-III

- 1. Paper-I / Quality in Analytical Chemistry
- 2. Paper-II / Advanced Analytical Techniques
- 3. Paper- III / Bio-analytical Chemistry and Food Analysis
- 4. Paper- IV (Elective course-1)/ Environmental and Certain Industrially Important Materials

(Elective course-2)/ Pharmaceutical and Organic Analysis

Semester-IV

- 1. Paper-I / Quality in Analytical Chemistry
- 2. Paper-II / Advanced Analytical Techniques
- 3. Paper- III/ Selected Topics in Analytical Chemistry
- 4. Paper- IV (Optional course-1)/ Intellectual Property Rights &

Cheminformatics (Optional course-2)/ Research Methodology

Examination Scheme

Choice Based Credit System (CBCS)

***** Revised Scheme of Examination

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40% marks in the first part and by conducting the Semester End Examinations with 60% marks in the second part. The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below-

A) Internal Assessment: 40 %

20 Marks

Sr. No.	Particular	Marks
01	One periodical class test / online examination to be conducted in the given semester	20 Marks
02	 Any one tool out of these Group/ Individual Project Presentation and write up on the selected topics of the subjects / Case studies. Test on Practical Skills Open Book Test 	15 Marks
03	Active Participation and overall conduct	05 Marks

Question Paper Pattern

(Periodical Class Test for the Courses at Post-Graduate Programmes)

Maximum Marks: 20Duration: 40 Minutes

Particular	Marks
1.Match the Column / Fill in the Blanks / Multiple Choice Questions/ True/False/Answer in One or Two Lines (Concept based Questions) (02Marks each)	10 Marks
2.Answer in Brief(Attempt any two out of three)	10 Marks

A) Semester End Examination: 60 %

60 Marks

- Duration: The examination shall be of $2\frac{1}{2}$ hours duration.
- There shall be five questions each of 12 marks.

Question may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the unit.

Question Paper Pattern for Semester End Examination

		Semester End Examination for theory coper the following scheme.	urse work will be
	Each theory paper shall be of two and half hour duration.		
I	1. There shall	be five questions each of 12 marks.	
	All questions a	are compulsory and will have internal option	ons.
		be subdivided into sub-questions a, b, c	and the allocation of
	marks depends	s on the weightage of the unit.	
	Q-1	From Unit – I (having internal options.)	12 M
	Q-2	From Unit – II (having internal options.)	12M
	Q-3 From Unit – III (having internal options.) 12M		
	Q-4	Q-4 From Unit – IV(having internal options.) 12M	
	Q-5	Questions from all the FOUR Units with equal weightage of marks allotted to each Unit. 12 M	
II	Practical	The Semester End Examination for Practical course work will be conducted as per the following scheme.	
Sr.	Particulars of External Practical Examination Marks%		
No.	raticulars of External Fractical Examination Warks%		
1	Laboratory We	ork	80
2	Journal 10		
3	Viva 10		
	TOTAL 100		

❖ Passing Standard

The learners shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment and Semester End Examination. The learners shall obtain minimum of 40% marks (i.e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i.e. 24 Out of 60) separately, to pass the course and minimum of grade D in each project wherever applicable to pass a particular semester.

❖ Guidelines and Evaluation pattern for project work (100 Marks)

Introduction

Inclusion of project work in the course curriculum of the M.Sc. programme is one of the ambitious aspects in the programme structure. The main objective of inclusion of project work is to inculcate the element of research work challenging the potential of learner as regards to his/ her eager to enquire and ability to interpret particular aspect of the study in his/ her own words. It is expected that the guiding teacher should undertake the counselling sessions and make the awareness among the learners about the methodology of formulation, preparation and evaluation pattern of the project work.

- There are two modes of preparation of project work
 - 1. Project work based on research methodology in the study area
 - 2. Project work based on internship in the study area

Choice Based Credit, Grading and Semester System (CBCGS) to be implemented from the Academic year 2023-2024

M.Sc.-II Analytical Chemistry

Semester-III

Course Code	Unit	Topics	Credits	L / Week
	I	Quality in Analytical Chemistry-I		1
PSC3QAC	II	Sample Management system	4	1
	III	Laboratory Accreditation-I		1
	IV	Uncertainty in Measurement and		1
		Calibration of Instrument-II		
	I	Spectral Methods –I		1
	II	Spectral Methods –II	4	1
PSC3AIT	III	Electroanalytical Methods		1
	IV	Miscellaneous Techniques		1
	I	Bio-analytical Chemistry-I		1
	II	Bio-analytical Chemistry-II	4	1
PSC3BCF	III	Food analysis-I		1
	1111	1 ood anarysis 1		1
	IV	Food analysis-II		1
	I	Chemistry of Atmosphere &Environmental legislation		1
	II	Water Quality Monitoring	4	1
PSC3ENC	III	Monitoring of Air Pollution and Soli Pollution		1
	IV	Control of Pollution through Green Chemistry		1
	I	Pharmaceutical and Organic Analysis		1
DCC2DCA	II	Drugs		1
PSC3POA	III	Forensic Analysis	4	1
	IV	Cosmetics Analysis		1
PSC3QAP				
PSC3AIP		Practical Course	8	16
PSC3BCP	-			
PSC3ENP/				
PSC3POP				

Choice Based Credit, Grading and Semester System (CBCGS) to be implemented from the Academic year

2023-2024

M.Sc.-II Analytical Chemistry

Semester- IV

Course Code	Unit	Topics	Credits	L / Week
	I	Separation Techniques-I		1
PSC4QAC	II	Separation Techniques-II	4	1
	III	Separation ,Analysis and Standardization of Herbal based products		1
	IV	Advanced Separation Techniques		1
	I	Spectral Methods –III		1
	II	Spectral Methods –IV	4	1
PSC4AIT	III	Radiochemical and Thermal Methods		1
	IV	Hyphenated Techniques		1
	I	Effluent Treatment		1
	II	Solid Waste Management	4	1
PSC4STA	III	Plastics and Polymers		1
	IV	Metallurgical Analysis		1
	I	Introduction to Intellectual Property Rights-I		1
PSC4IPR	II	Introduction to Intellectual Property Rights-II	4	1
PSC4IPK	III	Introduction to Chemoinformatics		1
	IV	Application of Chemoinformatics		1
	I	Research and Literature Survey		1
	II	Data Analysis	Λ	1
PSC4REM	III	Methods of Scientific Research and Writing	4	1
	IV	Chemical Safety and Ethical Handling of Chemicals		1
PSC4QAP		D. i. I.C.		1.0
PSC4AIP PSC4STP	_	Practical Course	8	16
PSC4IPP/ PSC3REP		Project Evaluation / Industrial Internship		

Choice Based Credit, Grading and Semester System CBCGS) (To be implemented from the Academic year 2023-2024)

	M.Sc. ANALYTICAL CHEMISTRY SEMESTER –	
	III PSC3QAC	
	Quality in Analytical Chemistry	
UNIT 1	Quality Management system	15L
	1.1 Review of GLP and their regulations for analytical labs, roles and responsibilities of quality personnel, appropriate design and placement of laboratory equipment, requirements for maintenance and calibration. [6L]	
	1.2 Concepts and significance of Quality control charts: The X-quality control chart, the R-quality control chart and its interpretation, spiked sample control charts, use of blind samples in quality control, use of proficiency evaluations in quality control. [6L]	
	1.3 Documentation: Raw Data : Type of notebooks, control of notebook distribution and data entry. General Reagents and volumetric reagents. [3L]	
UNIT II	Sample Management system	15
	2.1 Sampling: Definition, types of sample, sampling plan, quality of sample, sub-sampling, Sampling of raw materials, intermediates and finished products. Sample, sample labelling, sample log-in/register preparations – dissolution technology and decomposition, storage of samples. Importance and need of preservation of sample and records, Pre-treatment of samples: soil, food and cosmetics.[8L]	
	2.2 Selection of the Method:	
	Sources of methods, factors to consider when selecting a method, performance criteria for methods used, reasons for incorrect analytical results,	
	Method validation – ICH guidelines Q2A, and quality by design (PAT). [7L]	
UNIT III	Laboratory Accreditation- I	15
	3.1 Laboratory accreditation: Criteria for laboratory accreditation, Benefits of laboratory accreditation, evolution and significance of quality management, ISO series of standards on quality management system. Registration/ certification — benefits of QMS certification, Advantages and requirements of ISO 9000-2000; ISO 9001-2000.	
	Significance of ISO 9001, 9002, 9003 and 9004. Quality management principles in QMS. [8L]	
	3.2 ICH guidelines: Q1A to Q1F (stability guidelines), Q3Ato Q3D (Impurities) Q6Ato Q6B (Specifications) Q10 (Pharmaceutical Quality System) ICH guidelines – Quality Risk assessment Q 9. [7L]	
UNIT IV	Uncertainty in Measurement and Calibration of Instrument	15
	4.1 Measurement of uncertainty: Definition and evaluation of uncertainty, putting uncertainty to use, interpretation of results and improving the quality of results. [5L]	
	4.2 Signal to noise: Signal to noise ratio, importance and reasons to improve S/N ratio, sources of noise in instrumental analysis. Signal to noise enhancement, hardware devices for noise reduction, software, methods for noise reduction. Numerical problems are expected on 2.1 and 2.2). [5L]	

4.3 Calibration and maintenance of Instruments / Equipment:

Instrument calibration — linear calibration curves, equipment calibration, frequency of calibration, calibration of common laboratory instrument and equipment (Analytical balances, volumetric glassware, ovens, furnaces, UV / Visible spectrophotometer, pH meter, conductivity meter, IR spectrophotometers, AAS, GC, HPLC etc.,). Maintenance of instruments and equipment. [5L]

- 1. Quality in the analytical chemistry laboratory, E Prichard, John Wiley and sons N.Y 1997.
- 2. Quality assurance in analytical Chemistry, W Funk, V Dammann, G. Donnevert VCH Weinheim1995.
- 3. Amit S. Patil *et. al.*, Quality by Design (QbD): A new concept for development of Quality pharmaceuticals, International Journal of Pharmaceutical Quality Assurance; 4(2); 13-19.
- 4. Lalit Singh and Vijay Sharma, Quality by Design (QbD) Approach in Pharmaceuticals: Status, Challenges and Next Steps, Drug Delivery Letters, 2015, 5, 2-8. Quality in the analytical chemistry laboratory, E Prichard, John Wiley and sons N.Y 1997
- 5. Fundamentals of Analytical Chemistry, D. A. Skoog and D. M. West, Saonders, College publication.
- 6. OECD Principles of Good Laboratory Practice (as revised in 1997)". OECD Environmental Health and Safety Publications. OECD. 1. 1998.
- 7. R. D. Braun, Introduction to Instrumental Analysis, McGraw Hill Publisher. Chapter 5
- 8. Analytical Chemistry, G. D. Christain, Wiley
- 9. Quantitative Chemical Analysis, 6 th Edition, Vogel: Chapter 12.
- 10. Quality Management, Donna C S Summers, Prentice-Hall of India, Ch.: 3.

SEMESTER-III PSC3AIT

Advanced Instrumental Techniques

UNIT I	Spectral Methods I	15
	1.1 Principle, Instrumentation and Applications of Scanning Probe	
	Microscopy, Atomic Force Microscopy [3L]	
	Scanning Tunneling Microscopy [3L]	
	1.2 Ion Probe Spectroscopy, Secondary Ion mass spectroscopy. [3L]	
	Low-Energy Ion Scattering and Rutherford Backscattering [4L]	
	1.3 Atomic Emission Spectroscopy: electrical discharge sources [2L]	
UNIT II	Spectral Methods – II	15
	2.1 Principle, Instrumentation, and Applications of:	
	a. Electron Spin Resonance Spectroscopy (ESR) [4L]b. Mossbauer's Spectroscopy [4L]	
	c. Particle-Induced X-Ray Emission [4L]	
	d. Transmission electron Microscopy[3L]	
	•••	
UNIT III	Electroanalytical Methods	15
	Advanced ElectroanalyticalTechniques:	
	3.1 Current Sampled (TAST) Polarography, Normal and Differential Pulse	
	Polarography [3L]	
	3.2 Potential Sweep methods- Linear Sweep Voltammetry and Cyclic	
	Voltammetry.[3]	
	3.3 Potential Step method- Chronoamperomertry [2L]	
	3.4 Controlled potential technique- Chronopotentiometry [2L]	
	3.5 Stripping Voltammetry- anodic, cathodic, and adsorption [2L]	
	3. 6 Chemically and electrolytically modified electrodes and ultra-	
	microelectrodes in voltammetry [3L]	
UNIT IV	Miscellaneous Techniques	15
	1.1 Principle, Instrumentation and Applications of:	
	Chemiluminesescence techniques[3L]	
	Chirooptical Methods: ORD, CD [5L]	
	Photoacoustic spectroscopy [3L]	
	Spectroelectrochemistry [4L]	

- 1. Analytical Chemistry, G. D. Christian, 4th Ed. John Wiley, New York (1986)
- 2. Fundamentals of Analytical Chemistry, D.A. Skoog and D. M. West and F. J. Holler Holt-Saunders 6th Edition (1992)
- 3. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann, 5th Edition (1998)Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt, Jr. J. A. Dean and F. Settle Jr 6th Ed CBS (1986)
- 4. Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A. Settle Jr 7th Ed CBS (1986)
- 5. Introduction to Instrumental Analysis, R. D. Braun, Mc Graw Hill (1987)
- 6. Electrochemical Methods, A. J. Bard and L.R. Faulkner, John Wiley, New York, (1980)
- 7. Electroanalytical Chemistry, J.J. Lingane, 2nd Ed Interscience, New York (1958)
- 8. Modern Polarographic Methods in Analytical Chemistry, A. M. Bond, Marcel Dekker, New York, 1980.
- 9. Electroanalytical Chemistry, Ed A. J. Bard and Marcel Dekker, New York, (A series of volumes)
- 10. Techniques and mechanism of electrochemistry, P. A. Christian and A. Hamnett, Blachie Academic and Professional (1994)
- 11. Wilson and Wilson's Comprehensive Analytical Chemistry, Ed. G. Svehla. (A series of Volumes)
- 12. Treatise on Analytical Chemistry, Eds. I. M. Kolthoff and Others, Interscience Pub. (A series of volumes).
- 13. Standard Methods of Chemical Analysis, Eds. F. J. Welcher, Robert E. Krieger Publishing Company, (A series of volumes)
- 14. Polarographic Methods in Analytical Chemistry, M. G. Arora, Anmol Publications Pvt Ltd
- 15. Surface Analysis –The Principal Techniques, 2nd Edition Edited by John C. Vickerman and Ian S. Gilmore 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-01763-0
- 16. NMR, NQR, EPR, and Mössbauer Spectroscopy in Inorganic Chemistry *R. V. Parish*. Ellis Horwood, Chichester

SEMESTER – III

PSCH3BCF

Bioanalytical Chemistry and Food Analysis

	Bioanalytical chemistry -I	15
	1.1 Body Fluids	
	1.2 Composition of body fluids and detection of abnormal levels of	
	glucose, creatinine, uric acid in blood, protein, ketone bodies and	
	bilirubin in urine leading to diagnosis of diseases. [5L]	
	1.3 Physiological and nutritional significance of vitamins (water	
	Soluble and fat soluble) and minerals. [5L]	
	1.4 Analytical techniques (including microbiological techniques) for	
	Vitamins. [5L]	
UNIT II	Bioanalytical Chemistry-II	15
	2.1 Introduction of Antigen and Antibody.	10
	General Features of the Antigen and Antibody Interactions.[3L]	
	2.2 Immunoassays: Theory ,Principle, Applications and Limitations	
	of RIA,ELISA and Fluoro-immuno assays.[3L]	
	2.3 Introduction to Biomolecules: lipids, proteins, amino acids,	
	Nucleic acids, enzymes, carbohydrates- specific examples; sampling	
	in biosystems .[3L]	
	2.4 Isolation of biomolecules, basic principles of centrifugation,	
	types of centrifugation methods for biomolecules, Flow	
	cytometry.[3L]	
	2.5 Biosensors for glucose, RTPCR and significance in diagnostics,	
	DNA and other biologically important molecules. [3L]	
UNIT	Food Analysis - I	15
III	·	
	3.1 Fuel value of food and importance of food nutrients [2L]	
	3.2 General idea about Food processing and preservation;	
	Food Additives: Legislation. [3L] Chemical preservatives, fortifying agents, emulsifiers, texturizing	
	agents, flavours, colours, artificial sweeteners, enzymes.	
	Analysis of food for additives. [5L]	
	Determination of SO ₂ , nitrate and nitrites; determination of ascorbic	
	acid; identification and determination of saccharine and identification of	
	colors in food, natural colours [5L]	
	3.3 Food Contaminants– Trace metals and pesticide residues,	
	Contaminants from industrial wastes (polychlorinated biphenyls,	
	dioxins), toxicants formed during food processing (aromatic	
	hydrocarbons, nitrosamines), veterinary drug residues and melamine	
	contaminants. [8L]	
UNIT IV	Food Analysis - II	15
	4.1 Aspects of food safety : HACCP, GMP, role of FDA, Agmark, ISI Concept of sanitation and hygienic production of food [6L]	
	4.2 Food packaging : Introduction, types of packing materials, and industrial requirements. [2L]	

4.3 Analysis of Milk: Fat content, proteins, acidity, bacteriological quality and milk adulterants. [2L] acid value, sap value, iodine value. Determination of rancidity and antioxidants. [2L]

4.5 Analysis of spices: cloves, cinnamon, pepper, mustard Determination of volatile oils and fixed oils. [3L]

- 1. General, Organic and biological chemistry, H. Stephen Stoker, Cengage Learning.
- 2. Advance dairy chemistry, vol 3, P. F. Fox, P. L. H. McSweeney Springer.
- 3. Physiological fluid dynamics vol 3, Nanjanagud Venkatanarayanasastry Chandrasekhara Swamy Narosa Pub. House, 1992
- 4. Molecular Biological and Immunological Techniques and Applications for food, edited by Bert Popping, Carmen Diaz-Amigo, Katrin Hoenicke, John Wiley & sons.
- 5. Food Analysis: Theory and practice, Yeshajahu Pomeranz, Clifton E. Meloan, Springer.
- 6. Principles of package development, Gribbin et al
- 7. Modern packaging Encyclopedia and planning guide, Macgra Wreyco.
- 8. Food Analysis, Edited by S. Suzanne Nielsen, Springer
- 9. Analytical Biochemistry, D, J. Homes and H. Peck, Longman (1983)
- 10. Bioanalytical Chemistry, S. R. Mikkelesen and E. Corton, John Wiley and sons 2004.
- 11. Analysis of food and beverages, George Charalanbous, Accademic press 1978
- 12. The Immunoassay Handbook Theory and Applications of Ligand Binding, ELISA and Related Techniques, David Wild, Fourth Edition, 2013

SEMESTER-III

PSC3ENC

Environmental Chemistry

UNIT I	Chemistry of atmosphere & Environmental legislation	15
	1.1 Atmosphere, nitrogen, hydrogen, halogen, sulphur, carbon containing compounds in the atmosphere. [2L]	
	1.2 Ozone Chemistry, Evolution of ozone layer, Chemical and photochemical Processes. [2L]	
	1.3 Sources and sink of Chlorofluorocarbons and UV radiations Photochemical smog-Effects and control. [2L]	
	 1.4 Carbon credit and global issues related to environmental pollution. [2L] 1.5 Pollutants in the environment and their sources; general classifications of pollutants and their chemical structures, properties, toxicity. [2L] 1.6 Environmental Impact Assessment: Environmental Impact Assessment process in India [2L] 1.7 Environmental Legislation: role and responsibilities of pollution control boards, Motor Vehicle Act and method of analysis with respect to PUC. [3L] 	
UNIT II	Water quality Monitoring	15
	Water: Types – Potable water, Waste water 2.1 Potable water Quality and requirements of potable water, direct and indirect pollutants for potable water reservoirs Regulatory requirements for packaged drinking water. [7L] 2.2 Waste water Sources of water, Constituents – Microorganisms; Solids; Inorganic pollutants, Organic pollutants, Pollution indicators – DO, BOD, COD, pH, Suspended solids, Waste water treatment [8L]	
UNIT III	Monitoring of Air pollution and soil pollution	15
	 3.1 Monitoring of Air pollution: Sampling methods for air, flew gas industrial exhaust, stag samples etc. [3L] 3.2 Importance of automobile exhaust control and its limits[3L] 3.3 Sampling and analysis of: Particulate matter, aerosols, ammonia and organic vapors. [3L] 3.4 Monitoring of air pollutants by Instrumental Methods-Control of air pollution by raw material change, process modification, adsorption,	

4.1 Green Chemistry

Basic principles of Green Chemistry, Definition, Design aim and Principles of Green Chemistry. [3L]

4.2 Green catalysts

Role of green catalyst in Green Chemistry, Enzymes as green catalysts. Green catalysis for Chemical transformation. [4L]

4.3 Green synthesis

Methods of Green Synthesis, Applications of Green Synthesis, Green Synthesis of Nanoparticles. [3L]

4.4 Green solvents

Sustainable solvent in Chemical Processes, Types of Green Solvent Applications of Green Solvent. [4L]

4.5 Environmental Audits: concept of audit, authorities, evaluation methodology, benefits and certification [2L]

- 1. Environmental Chemistry, A. K. De, 2nd ED. Wiley (1989).
- 2. Environmental Pollution Analysis, S. M. Khopkar, John Wiely (1993).
- 3. Air Pollution Sampling And Analysis, Sharad Gokhale, IIT Guwahati, May 2009.
- 4. Environmental Pollution Analysis, S. M. Khopkar, New Age International publication (2011).
- 5. Water And Water Pollution (hand book) Ed., Seonard'l Ciacere, Vol I to IV, Marcel Dekker inc. N.York(1972)
- 6. Water pollution, Arvind kumar, APH publishing (2004)
- 7. Introduction to Potable Water Treatment Processes Simon Parsons, Bruce Jefferson, Paperback publication.
- 8. Guidelines for drinking-water quality, Third edition, (incorporating first and second addenda). WHO report.
- 9. Soil pollution, S.G. Misra and Dinesh Mani, APH Publishing Corporation, (2009).
- 10. Soil Pollution: origin, monitoring and remediation, Abrahim Mirsal, Springer (2010).
- 11. Noise Pollution, Donald F Anthrop, Lexington Books, (1973)
- 12. Noise Effects Handbook: A Desk Reference to Health and Welfare Effects of Noise (1981) Available at NCL laboratories e- Library.

- 13. Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality Edited by Nicolas Mazzeo, InTech Publications (2011).
- 14. Environmental Protection Against Radioactive Pollution: N. Birsen, Kairat K. Kadyrzhanov, Springer publication, (2003).
- 15. Environmental law in India, Mohammad Naseem, Wolters Kluwer.
- 16. Environmental Protection, Law And Policy In *India* Kailash Thakur google books (1997).
- 17. Green chemistry An Introductory text, Mzike Lancaster, Royal Society of Chemistry (2002)
- 18. Pesticide Analysis Ed K. G. Das, Dekker (1981)
- 19. Analytical, Agricultural Chemistry S. L Chpra J.S Kanwar Kalyani publication
- 20. Soil and plant Analysis C.S Piper, Hans Publication
- 21. Green chemistry and catalyst, R. A. Sheldon, Isabella Arends,

Ulf Hanefeld Wiley VCH verlag GmBH & co.

SEMESTER – III

PSC3POA

Pharmaceutical and Organic Analysis

UNIT I	Pharmaceutical Analysis	15
	 1.1 General idea regarding the Pharmaceutical Industry, introduction to pharmaceutical formulations and novel drug delivery system, classification of dosage forms. Role of FDA in pharmaceutical industries, Pharmacopeia. [7L] 1.2 Standardization and quality control of raw material and finished product Assay as per IP i) adrenaline, ii) Cephalexin, iii) ferrous fumarate, iv) paracetamol. [8L] 	
UNIT II	Drugs	15
	 2.1 Analysis of compounds based on functional groups, instrumental methods for analysis of drugs, proximate assays, assays of enzyme containing substances, biological and microbiological assays and tests. [8L] 2.2 Limit tests, Sources of impurities and impurity profiling, solubility tests, disintegration tests, stability studies, bioequivalence and bioavailability studies. [7L] 	
UNIT III	Forensic Science	15
	 3.1 Analytical Chemistry in Forensic Science: General idea. [2L] 3.2 Forensic Serology & DNA Analysis 3.3 Blood: Blood preservation, bloods stain analysis. 3.4 DNA Analysis: RELP & PCR 3.5Hair analysis: Structure and composition of hair, morphological examination, Chemical analysis of hair components and components remaining on or in hair. 3.6 Alcohol in body fluids: Sampling and sample preservation, analysis -GC, IR, enzymatic and other methods [5L] 3.7Analytical Toxicology: Isolation, identification and determination of: Narcotics: Heroin, morphine and cocaine. Stimulants: Amphetamines and caffeine. Depressants: Benzodiazepines, Barbiturates. Hallucinogens: LSD and Cannabis. Metabolites of drugs in blood and urine of addicts. Viscera, stomach wash, vomit and postmortem blood for poisons like—cyanide, arsenic, mercury, insecticides and pesticides. [8L] 	

UNIT IV	Cosmetic Analysis	15
	 4.1 Cosmetics: Introduction. Evaluation of cosmetic materials, raw materials and additives. Formulation, standards and methods of analysis. [2L] 4.2 Deodorants and antiperspirants: Al, Boric acid, chlorides, sulphates, and methanamine. [3L] 4.3 Face powder: Ti, Fe, oxides of Ti, Fe and Al (total). [2L] 	
	 4.4 Hair tonic: 2,5-diaminotoluene, potassium borates, sodium perborate, pyrogallol, resorcinol, salicylic acid, dithioglycollic acid (in permanent wavers) [5L] 4.5 Creams and Lotions: Types of emulsions, chloroform soluble materials, glycerol, pH emulsion, ash analysis, nonvolatile matter (IR spectroscopy) [3L] 	

- 1. Analytical Biochemistry, David J Holmes and Hazel Peck, Longman, 1983.
- Bioanalytical Chemistry, Susan R Mikkelesen and Eduardo Cotton, John Wiley and Sons, 2004.
- 3. Harry's Cosmetology, 7th Ed, Longman Scientific Co.
- 4. Formulation and Function of Cosmetics, Joseph Stefan Jellinek, Wiley Interscience, 1971.
- 5. Cosmetic Technology, Edward Sagarin, Interscience Publishers, 1957.
- 6. Modern Cosmetics, Edgar George Thommsen, Francis Chilson, Drug and Cosmetic Industry, 1947.
- 7. Encyclopedia of Industrial Chemical Analysis, Foster Dee Snell et al, Interscience Publishers, 1967.
- 8. Government of India Publications of Food, Drug and Cosmetic Act and Rules.
- 9. The Handbook of Drug Laws, M L Mehra, University Book Agency, Ahmedabad, 1997.
- 10. Chemical Analysis of Drugs, Takeru Higuchi, Interscience Publishers, 1995.
- 11. Text book of Pharmaceutical Analysis, Kenneth Antonio Connors, Wiley, 2001.
- 12. Fundamentals of Urine and Body Fluid Analysis, Nancy A Brunzel, Elsevier health Sciences, 2013.
- 13. Lab Manual on Blood analysis and Medical Diagnostics, Dr Gayatri Prakash, S Chand and Company Ltd, New Delhi.
- Manual of Medical Laboratory Techniques, S Ramakrishnan and K
 N Sulochana, Jaypee BrothersMedical Publishers (P) Ltd, 2012.
- 15. Indian Pharmacopeia, Volume I and II.

- 16. Forensic Chemistry, Suzanne Bell, Pearson Prentice Hall Publication, 2006.
- 17. Forensic Chemistry, David E Newton, Infobase Publishing, 2007.
- 18. Encyclopedia of Analytical Chemistry, Volume 3, Academic Press, 1995.
- 19. AOAC volume I and II.

SEMESTER-III PRACTICALS PSC3QAP

- 1. Determination of the pK value of an indicator.
- 2. Canned food: Limits test for tin/zinc
- 3. Estimation of strong acid, weak acid and salt in the given mixture conductometrically.
- 4. Determination of percentage purity of methylene blue indicator.
- 5. Spectrophotometric Determination of Fe in Water Sample using Standard Addition Method.

PSC3AIP

- 1. Estimation of fluoride in a tooth paste spectrophotometrically.
- 2. Estimation of Vitamin C in lemon Juice/squash by colorimetric method.
- 3. Analysis of mixture of carbonate and bicarbonate (present in ppm range) using pH metry.
- 4. Estimation of Na+ in dairy whitener by flame photometry.
- 5. Spectrophotometric determination of pH of buffer solution.
- 6. Estimation of micronutrient from food by AAS (any two elements such as Fe, Cu, Zn, Mo, B, Mn) [Demonstration]

PSC3BCP

- 1. Estimation of amino acid by Ninhydrin method (Spectrophotometrically).
- 2. Analysis of lactose in milk
- 3. Estimation of Caffeine in tea
- 4. Estimation of Iodine value of oil / fat
- 5. Estimation of cholesterol and uric acid in given blood sample.
- 6. Estimation of Protein by Biuret Method.(Colorimeter)

PSC3ENP/ PSC3POP

- 1. Estimation of drugs by non-aqueous titration: Pyridoxine hydrochloride, Sulphamethoxazole.
- 2. Analysis of water sample: Acidity and sulphate (Benzidine method).
- 3. Analysis of smear of lipstick on the napkin and its identification by comparing with lipstick samples.
- 4. Determination of nicotine content in cigarette tobacco.
- 5. Estimation of Ca in Ca-pentathonate/calcium lactate tablets
- 6. Analysis of Aspirin/paracetamol as per IP with respect to identification and assay.

NOTE:

- 1. The candidate is expected to submit a journal certified by the Head of the Department / institution at the time of the practical examination.
- 2. A candidate will not be allowed to appear for the practical examination unless he / she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily.
- 3. The list of the experiments performed by the candidate should be attached with such certificate.
- 4. Use of non-programmable calculator is allowed both at the theory and the practical examination.

SEMSTER-IV

PSC4QAC

Separation Techniques

UNIT I	Separation Techniques - I	15
	3.1 Ion exchange chromatography : Ion exchange equilibria, breakthrough	
	capacity, inorganic ion exchangers, synthetic ion exchangers, chelating resins	
	and their applications for separation of inorganic and organic compounds.	
	[5L]	
	3.2 Ion chromatography: Principle, instrumentation with special reference	
	to Separation and suppressor columns, applications. [2L]	
	3.3 Exclusion chromatography: Theory, instrumentation and applications	
	of gel permeation chromatography, retention behaviour, inorganic molecular	
	sieves, determination of molecular weight of polymers. [5L]	
	3.4 Affinity Chromatography: principle, instrumentation and applications	
	Optimum pressure liquid chromatography (OPLC) [3L]	
UNIT II	Separation Techniques - II	15
	2.1Membrane Separation Processes: operating principles and applications of microfiltration, ultra-filtration, reverse osmosis, dialysis and electro-dialysis. [7L]	
	2.2 Solvent Extraction: Extraction equilibria of Liquid cation exchangers, liquid anion exchangers and crown ethers. Nature of extracted species. Parameters Influencing extraction including e.g. role of diluents, aggregation, third phase formation and counter ion. Applications of liquid-liquid extraction in metallurgy and biotechnology. [8L]	

UNIT III	Separation, Analysis and Standardization of Herbal based products	15
	3.1: Herbs as a raw material: Defination of herb, herbal medicine, herbal Medicinal products, herbal drug preparation. Sources of herbs. Selection, identification and authentication of herbal materials, drying and processing of herbal raw materials, drying and processing of herbal raw materials. [6L] 3.2: Extraction of herbal materials: Choice of solvent for extraction, methods used for extraction and principals involved in extraction. [3L] 3.3: Standardization of herbal formulation and herbal extracts: Standardization of herbal extract as per WHO,GMP guidelines, Physical, Chemical, Spectral and toxicogical standardization, qualitative and quantitative estimations. [6L]	
UNIT IV	Advanced Separation Techniques	15
	 4.1 Electrophoresis: introduction, factors affecting migration rate, supporting media (gel, paper, cellulose, acetate, starch, polyacrylamide, agarose, sephadex and thin layers) [2L] 4.2 Techniques of Electrophoresis: low and high voltage, sds-page, continuous electrophoresis, capillary electrophoresis, zone, gel, isoelectric focusing, isotaechophoresis and miceller electro kinetic capillary chromatography, instrumentation, detection and applications. [8L] 4.3 Supercritical fluid Chromatography: Theory, concept of critical state of matter and supercritical state, types of supercritical fluids, instrumentation, applications to environmental, food, pharmaceuticals and polymeric analysis.[5] 	

- 1. Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969
- 2. Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969.
- 3. Extraction Chromatography, T. Braun, G. Ghersene, Elsevier Publications 1978.
- 4. Super critical fluid extraction, Larry Taylor Wiley publishers N.Y. 1996
- 5. Ion exchange separation in analytical chemistry, O Samuelson John Wiley 2nd ed 1963
- 6. Ion exchange chromatography, Ed H.F Walton Howden, Hutchenson and Rossing 1976
- 7. Chromatographic and electrophoresis techniques, I Smith Menemann Interscience 1960
- 8. Analytical Chemistry, G. D. Christain, Wiley
- 9. Instrumental Analysis, 5th Edition, Skoog, Holler and Nieman: Chapter 33
- 10. Introduction to instrumental methods of analysis by Robert D. Braun, Mc. GrawHill (1987)

SEMESTER-IV

PSC4AIT

Advanced Instrumental Techniques

UNIT I	Spectral Methods III	15
	1.1 NMR Spectroscopy: Theory and Instrumentation- recapitulation, FTNMR, 2D NMR,- FID signal generation mechanism, Techniques in 2D NMR- homo nuclear correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), heteronuclear correlation (HETCOR) [9L] 1.2 Radio waves in imagin: principal instrumentation and applications of MRI [3L]	
	1.3 Application of NMR to other nuclei C ¹³ , P ³¹ and F ¹⁹ spectroscopy [3L]	
UNIT II	Spectral Methods IV	15
UNIT III	 2.1Mass spectrometry: recapitulation, correlation of mass spectra with molecular structure- interpretation of mass spectra, analytical information derived from mass spectra- molecular identification, metastable peaks, Fragmentation Reactions [5L] 2.2 Raman spectroscopy: Principle Theory "Instrumentation, techniques(SERS and Resonance Raman) and Applications of Raman spectroscopy [6L] 2.3 Spectrofluorimetry and Phosphorimetry [4L] Radiochemical and Thermal Methods 3.1 Activation analysis- NAA, radiometric titrations and radiorelease methods, Advantages of NAA[7L] 3.2 Thermal analysis: Principle, Interfacing, instrumentation and applications of the following. 	15
	(a) Simultaneous Thermal Analysis- TG-DTA and TG-DSC	
	(b) Evolved gas analysis- TG-MS and TG-FTIR [8L]	
UNIT IV	Hyphenated Techniques	15
	 4.1 Concept of hyphenation, need for hyphenation, possible hyphenations. [2 L] 4.2 Principle, Interfacing, instrumentation and Applications of GC – MS, ICP –MS, GC – IR, Tandem Mass Spectrometry, LC – MS: HPLC-MS, CE-MS. [13L] 	

- 1. Analytical Chemistry, G. D. Christian, 4th Ed. John Wiley, New York (1986)
- 2. Fundamentals of Analytical Chemistry, D. A. Skoog and D. M. West and F. J Holler Holt-Saunders 6th Edition (1998)
- 3. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann 5 Ed.
- 4. Instrumental methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A.
- 5. Thermal methods of Analysis, P. J. Haines, Blackie Academic & Professional, London (1995)
- 6. Thermal Analysis, 3rd Edition W. W. Wendlandt, John Wiley, N.Y. (1986)
- 7. Principles and Practices of X-ray spectrometric Analysis, 2 NY, (1975)
- 8. Ed E. P. Bertain, Plenum Press, Nuclear Analytical Chemistry, D. Bane, B. Forkman, B. Persson, Chartwell Bratt Ltd (1984)
- 9. Standard Methods of Chemical Analysis, Eds. F. J. Welcher, Robert E. Krieger Publishing Company, A series of volumes
- 10. A Complete Introduction to Modern NMR Spectroscopy 1st Edition by Roger S. Macomber
- 11. Spectrometric Identification of Organic Compounds Hardcover by Robert M. Silverstein Wiley
- 12. Tandem Techniques (Separation Science Series) 1st Edition by Raymond P. W. Scott John Wiley & Sons Ltd, 1997
- 13. Encyclopedia of Analytical Science, Editors-in-Chief: Paul Worsfold, Alan Townshend, and Colin Poole ISBN: 978-0-12-369397-6
- 14. Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation. Meyers Robert A Meyers
- 15. Introduction to Thermal Analysis Techniques and Applications Edited by Michael E. Brown
- 16. Principles and Applications of Thermal Analysis Edited by Paul Gabbott

SEMESTER – IV

PSC3STA Selected Topics in Analytical Chemistry

UNIT I	Effluent Treatment	15
	1.1 Effluent treatment plant general construction and process flow charts[3L]	
	1.2 Treatment and disposal of Sewage. [3L]	
	1.3 Effluent parameters [2L]	
	1.4 Permissible limits for metal (example Cr, As, Pb, Cd etc) traces	
	in the effluent. [2L]	
	1.5 Recovery of metals from effluent, modern methods – Electrodialysis,	
	Electrodeposition and Ion Exchange etc.[3L]	
	1.6 Importance of recovery of metals from effluent, Recycle and reuse of process and treated (effluent) water [2L]	
UNIT II	Solid Waste Management	15
	2.1 Solid waste management: objectives, concept of recycle, reuse	
	and recovery [3L]	
	2.2 Methods of solid waste disposal. [2L]	
	2.3 Treatment and disposal of sludge / dry cake [3L]	
	2.4 Managing non-decomposable solid wastes[2L]	
	2.5 Bio- medical waste: Introduction, Classification and methods of disposal [5]	
UNIT III	Plastics and Polymers	15
	3.1 Classification of plastic, determination of additives, molecular weight	
	distribution, analysis of plastic and polymers based on styrene, vinyl chloride, ethylene, acrylic and cellulosic plastics. [5L]	
	3.2 Metallic impurities in plastic and their determination. [2L]	
	3.3 Impact of plastic on environment as pollutant. [2L]	
	 3.4 Paints and pigments: Types of paints pigments, determination of volatile and non – volatile components, Flash point (significance and method of determination), separation and analysis of pigments, binders and thinners. [3L] 3.5 Role of Organo silicones in paints and their impact on environment. [3L] 	
UNIT IV	Metallurgical Analysis	15
	 4.1 Analysis of Ferroalloys: Analysis of steel, Molybdenum, Phosphorous. 4.2 Analysis of non- Ferrous alloys: Analysis of Tin, Zinc and Copper in Brass and Bronze. 4.3 Analysis of Tin and lead in Solder. 4.4 Analysis of Cement: Composition of Portland cement, estimation of Aluminium oxide and Ferrous oxide. Determination of Alumina in Cement by Polarography 4.3 Ore Analysis: Iron ore- Analysis of the Constituents – Moisture, loss of ignition, Total Iron, ferrous Iron, ferric Iron, alumina, Silica, Titania, Lime, Magnesia, Sulphur, phosphorous, manganese, alkalies, combined water, Carbon in blast furnace, flue dust and sinter. 	

- 1. Environmental Pollution Analysis, S. M. khopkar, New Age International publication (2011).
- 2. Water and water pollution (hand book) Ed., Seonard'l Ciacere, Vol I to IV, Marcel Dekker inc. N.Y.(1972)
- 3. Water pollution, Arvind kumar, APH publishing (2004)
- 4. Introduction to Potable Water Treatment Processes Simon Parsons, Bruce Jefferson, Paperback publication.
- 5. Solid waste management, K Sasikumar and Sanoop Gopi Krishna PHI publication (2009)
- 6. Solid waste management, Surendrakumar Northen Book Center (2009)
- 7. Handbook of chemical technology and pollution control 3 Edn Martin Hocking AP Publication (2005).
- 8. 8 Fundamental Concepts of Environmental Chemistry, Second Edition <u>G. S. Sodhi</u>, Alpha Science, 2005
- 9. Chemical analysis of metals; Sampling and analysis of metal bearing ores: American Society for Testing and Materials 1980 <u>Technology & Engineering</u>
- 10. Manual of Procedures for Chemical and Instrumental Analysis of Ores, Minerals, and Ore Dressing Products. Government of India Ministry of Steel & Mines, Indian Bureau of Mines, 1979.
- 11. Alloying: understanding the basics, edited by Joseph R. Davis, ASM International (2001).
- 12. Zone refining and allied techniques, Norman L. Parr, G. Newnes Technology & Engineering (1960).

SEMESTER – IV PSC4IPR

Intellectual Property Rights & Cheminformatics

UNIT I	Introduction to Intellectual Property-I	15
	 1.1 Historical Perspective, Different types of IP, Importance of protecting IP.[2L] 1.2 Patents: Historical Perspective, Basic and associated right, WIPO, PCT system, Traditional Knowledge, Patents and Health care-balancing promoting novation with public health, Software patents and their importance for India [5L] 1.3: Industrial Designs: Definition, How to obtain- features, International design registration. [2L] 1.4: Industrial Designs: Definition, How to obtain, features, International design registration. [2L] 1.5: Trade Marks: Introduction, How to obtain different types of marks – Collective marks, certification marks, service marks, trade names etc. [2L] 1.6: Geographical Indications: Definition, rules for registration, prevention of illegal exploitation, importance to India. [2L] 	
UNIT – II	Introduction to Intellectual Property-II	15
	 2.1Trade Secrets: Introduction and Historical Perspectives, Scope of Protection, Risks involved and legal aspects of Trade Secret Protection. [2L] 2.2 IP Infringement issue and enforcement: Role of Judiciary, Role of law enforcement agencies – Police, Customs etc. [2L] 2.3Economic Value of Intellectual Property: Intangible assests and their valuation, Intellectual Property in the Indian context – Various Laws in India Licensing and Technology transfer. [3L] 2.4Different International agreements: (a) World Trade Organization (WTO): (i) General Agreement on Tariffs and Trade (GATT), Trade Related Intellectual Property Rights (TRIPS) agreement (ii) General Agreement on Trade Related Services (GATS); Madrid Protocol. (iii) Berne Convention (iv) Budapest Treaty (b) Paris Convention WIPO and TRIPS, IPR and Plant Breeders Rights, IPR and Biodiversity[8L] 	
UNIT III	Introduction to Chemoinformatics	15
	 3.1 History and evolution of cheminformatics, Use of Cheminformatics, Prospects of cheminformatics, Molecular modeling and structure elucidation.[5L] 3.2 Representation of molecules and chemical reactions: Nomenclature, Different types of notations, SMILES coding, Matrix representations, Structure of Molfiles and Sdfiles, Libraries and toolkits, Different electronic effects, Reaction classification. [5L] 3.3 Searching Chemical Structures: Full structure search, sub-structure search, basic ideas, similarity search, three dimensional search methods. 	

	basics of computation of physical and chemical data and structure descriptors, data visualization. [5L]	
UNIT – IV	Applications of Chemoinformatics	15
	Prediction of Properties of Compound, Linear Free Energy Relations, Quantitative Structure – Property Relations, Descriptor Analysis, Model Building, Modeling Toxicity, Structure – Spectra correlations, Prediction NMR, IR and Mass spectra, Computer Assisted Structure elucidations, Computer assisted Synthesis Design, Introduction to drug design, Target, Identification and Validation, Lead Finding and Optimization, analysis of HTS data, Virtual Screening, Design of Combinatorial Libraries, Ligand based and Structure based Drug design, Application of Cheminformatics in Drug Design.[15L]	

SEMESTER – IV PSC4REM

Research Methodology

UNIT I	Research and Literature Survey	
	1.1Scientific Research:	
	Research: Definition, types, Need of research. Identification of the problem, ,	
	formulating the objectives, Hypotheses, Research Methods and Methodology	
	1.2 Selecting & defining Research problem, Research Process	
	Research Design: preparing Research design (experimental or otherwise),	
	Actual investigation, Data analysis and interpretation. [5L]	
	1.3Literature survey:	
	Need for Literature Survey, References,	
	Sources of literature: Primary, Secondary and Tertiary sources	
	1.4 Journals: Peer-reviewed, indexed, UGC-care listed, predatory, fake journals[3L]	
	1.5 Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance Index, Author Index, Formula Index, and other Indices with examples. [2L]	
	1.6 Digital Web sources: E-journals, Journal access, TOC alerts, Hot articles, Citation Index, Impact factor, H-index, E-consortium, UGC infonet, E-books, Shodhganga, Researchgate, Internet discussion groups and communities, Blogs, preprint servers, Search engines, Scirus, Google Scholar, ChemIndustry, Wikidatabases, Chem Spider, Science Direct, SciFinder, Scopus. [5L]	
UNIT – II	Data Analysis	15
	2.1The Investigative Approach: Making and recording Measurements, SI units and their use, Scientific methods and design of experiments. Analysis and Presentation of Data: Descriptive statistics, choosing and using statistical tests, Chemometrics, Analysis of Variance (ANOVA), SPSS, Correlation and regression, curve fitting, fitting of linear equations, simple linear cases, weighted linear case, analysis of residuals, general polynomial fitting, linearizing transformations, exponential function fit, r and its abuse, basic aspects of multiple linear regression analysis. [15L]	
UNIT – III	Methods of Scientific Research and Writing	15
3.1	3.1Scientific papers : Reporting practical and project work, Writing literature	
	surveys and reviews, organizing a poster display, giving an oral	
	presentation.(7L)	
	3.2 Writing Scientific Papers: Justification for scientific contributions, bibliography, description of methods, conclusions, the need for illustration, style, publications of scientific work, writing ethics, avoiding plagiarism.(8L)	

UNIT – IV	Chemical Safety & Ethical Handling of Chemicals	15
	4.1 Safe working procedure and protective environment: protective apparel, emergency procedure, first aid, laboratory ventilation, safe storage and use of hazardous chemicals, procedure for working with substances that pose hazards, flammable or explosive hazards, procedures for working with gases at pressures above or below atmospheric pressure, safe storage and disposal of waste chemicals, recovery, recycling and reuse of laboratory chemicals, procedure for laboratory disposal of explosives, identification, verification and segregation of laboratory waste, disposal of chemicals in the sanitary sewer system, incineration and transportation of hazardous chemicals.	

- 1. Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J., & Jones, A., (2011), Practical skills in Chemistry, 2nd Ed., Prentice Hall, Harlow.
- 2. Hibbert, D. B. & Gooding, J. J. (2006) Data Analysis for Chemistry Oxford University Press.
- 3. Topping, J., (1984) Errors of Observation and their Treatment 4 th Ed., Chapman Hill London.
- 4. Harris, D. C. (2007) Quantative Chemical Analysis 6th Ed., Freeman Chapters 3-5
- 5. Levie, R. De. (2001) How to use Excel in Analytical Chemistry and in general scientific data analysis Cambridge University Press.
- 6. Chemical Safety matters IUPAC-IPCS, (1992) Cambridge University Press.
- 7. OSU Safety manual 1.01

PRACTICALS PSC4QAP

PSC4IPP/PSC4REP

- 1. Separation of cadmium and zinc on an ion exchange resin.
- 2. Determination of nickel by extractive photometry using dimethyl glyoxime.
- 3. Determination of the partition coefficient of iodine between carbon tetrachloride and water.
- 4. Simultaneous determination of Ti³⁺ and V⁵⁺ spectrophotometrically by H2O2 method.
- 5. Determination of percent purity of methyl alcohol by Gas chromatography.

PSC4AIP

- 1. Interpretation of thermograms TGA,DTA .DSC (4 sample thermograms)
- 2. Interpretation of spectra NMR, Mass, IR.UV visible (at least 4 sample spectra of each)

PSC4STP

- 1. To analyze Bronze for Zn by complexometric method.
- 2. Analysis of detergents: Active detergent matter and alkalinity
- 3. Estimation of Nitrogen from Soil sample using Kjeldahl Method.
- 4. Analysis of water sample : Mn²⁺ by colorimetric method
- 5. Analysis of Bauxite for Ti by colorimetry / Al by gravimetry / Fe (volumetry)

PSC4IPP/PSC4REP

Project Evaluation/ Industrial Internship

NOTE:

- 1. The candidate is expected to submit a journal certified by the Head of the Department / institution at the time of the practical examination.
- 2. A candidate will not be allowed to appear for the practical examination unless he /she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.
- 3. Use of non-programmable calculator is allowed both at the theory and the practical examination.

UNIVERSITY OF MUMBAI

Janardan Bhagat Shikshan Prasarak Sanstha's

Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous)

Re-accredited A⁺ Grade by NAAC 'College with Potential for Excellence 'Status Awarded by UGC 'Best College Award' by University of Mumbai

Programme: M.Sc.

(Choice Based Credit System)

Total Credits:96

Course: Organic Chemistry

Programme Code: MSCOC1018

Syllabus for Semester III and IV

(Approved in the Academic Council Meeting held on 27/06/2023)

(To be implemented from the Academic Year 2023-2024)

Preamble of the Syllabus:

Master of Science (M.Sc.) in Organic Chemistry is a post-graduate course of Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous).

The students pursuing this course would have to develop in depth understanding of various aspects of the subject. The new curriculum of M.Sc. Organic Chemistry offers the courses which will prepare the students for critical thinking, understanding of the concepts in depth and skills for employability. The learning outcome based approach is intended to provide a focused and outcome based syllabus with an agenda to structure the teacher-learning experiences in a more student centric manner. The course combines the opportunity for students to acquire knowledge of wide range of cutting-edge fields in chemistry with sessions on theory, practical, presentation and a project supervised by one of the teacher.

Objectives of the Course:

- 1. Develop analytical thinking and apply the same for understanding principles, proposing mechanism and logical conclusions.
- 2. Comprehensive understanding of the interdisciplinary nature of Chemistry andemerging trends in Chemistry.
- 3. Competency in design and planning of synthesis and carry out with Good Laboratory Practices.
- 4. Access, search and use of chemical literature and acquiring necessary skills to succeed in research and advance studies.
- 5. Competency in handling instruments and interpretation of spectral data for structure determination of organic compounds.

MASTERS IN SCIENCE (M.Sc. Organic Chemistry) Programme Outcomes

After completion of M.Sc. organic chemistry programme students will acquire

S. N.	After completion of M.Sc. program students will acquire	Graduate Attribute
PO1	An ability to identify and describe broadly accepted	Disciplinary
	methodologies of science, and different modes of reasoning.	knowledge
PO2	An ability to demonstrate proficiency in various	Disciplinary
	instrumentation, modern tools, advanced techniques and ICT to	knowledge/Digital
	meet industrial expectations and research outputs.	literacy

PO3	An ability to identify problems, formulates, and proves hypotheses by applying theoretical knowledge and skills relevant to the discipline.	Problem-solving
PO4	An ability to be articulate thoughts, research ideas, information, scientific outcomes in oral and in written presentation to range of audience.	Communication skills
PO5	A capacity for independent, conceptual and creative thinking, analysis and problem solving through the existing methods of enquiry.	Problem solving
PO6	Skills required for cutting edge research, investigations, field study, documentation, networking, and ability to build logical arguments using scholarly evidence.	Research skills
PO7	An ability to portray good interpersonal skills with ability to work collaboratively as part of a team undertaking a range of different team roles	Teamwork
PO8	The ability to understand ethical responsibilities and impact of scientific solutions in global, societal and environmental context and contribute to the sustainable development	Moral and ethical awareness/ multicultural competence
PO9	An ability to demonstrate leadership, to take action and to get others involved.	Leadership
PO10	An openness to and interest in, life-long learning through directed and self-directed study	Self-directed learning
PO11	An ability to translate the knowledge and demonstrate the skills required to be employed and successful professional development.	Life-long learning

Programme: M.Sc. Organic Chemistry

Programme Specific outcomes

PSOs No.	After completing the programme in M.Sc. Organic Chemistry, Student will able to:	Graduate Attribute
PSO1	Develop analytical thinking and apply the same for understanding principles, proposing mechanism and logical conclusions, understanding of the interdisciplinary nature of Chemistry and	Disciplinary knowledge
	emerging trends in Chemistry.	Problem solving
PSO2	Get research opportunities in academics as well as employment at R & D in synthetic division of chemical, pharmaceutical, dyestuff and food industries	Research skills
PSO3	Competency in design and planning of synthesis and carry out with Good Laboratory Practices, handling instruments and interpretation of spectral data for structure determination of organic compounds	Research skills

Janardan Bhagat Shikshan Prasarak Sanstha's

Changu Kana Thakur Arts, Commerce and Science College, New Panvel (Autonomous)

Draft Syllabus

Syllabus for the M.Sc. Semester III and IV

Credit Based Semester and Grading System

To be implemented from the academic year 2023-24 SEMESTER III

Course Code	Course Code Unit Topics		Credits	L/Week
	I	Organic Reaction Mechanisms		1
	II	Pericyclic Reactions	_	1
PSC3TOC	III	Stereochemistry-I	4	1
	IV	Photochemistry		1
	I	Name reactions with mechanism and application		1
PSC3SOC	II	Radicals in Organic Synthesis	4	1
	III	Enamines, Ylides and α-C-H functionalization		1
	IV	Metals / Non-metals in organic synthesis		1
	I	Natural products-I		1
Da Gar ibria	П	Natural products-II	_	1
PSC3NPHS	III	Heterocyclic compounds-I	4	1
	IV	Advanced Spectroscopic Techniques -I		1
	I	Drug discovery, design and development		1
	II	Drug design, development and synthesis		1
PSC3MBG	III	Biogenesis and biosynthesis of natural products	4	1
	IV	Green chemistry		1
	I	Biomolecules-I	- 4	1
DGC2DIC	II	Biomolecules-II		1
PSC3BIC	III	Biomolecules-III		1
	IV	Biomolecules-IV		1
PSC3TOP & PSC3SOP		Practical	4	8
PSC3NPP & (PSC3MBP or PSC3BIP)		Practical	4	8

SEMESTER IV

Course Code	Unit	Topics	Credits	L/Week
	I	Physical Organic Chemistry		1
	II	Supramolecular Chemistry		1
PSC4TOC	III	Stereochemistry-II	4	1
	IV	Asymmetric Synthesis		1
	I	Designing Organic Synthesis-I		1
	II	Designing Organic Synthesis-II		1
PSC4SOC	III	Electro-organic chemistry and selected methods of organic synthesis	4	1
	IV	Transition and rare earth metals in organic synthesis		1
	I	Natural products-III		1
	II	Natural products-IV		1
PSC4NPHS	III	Heterocyclic compounds-II	4	1
	IV	Advanced Spectroscopic Techniques -II		1
	I	Introduction to Intellectual Property		1
200122	II	Trade Secrets	,	1
PSC4IPR	III	Introduction to Cheminformatics	4	1
	IV	Applications		1
	I	Print		1
	II	Data Analysis		1
PSC4RMT	III	Methods of scientific research and writing scientific papers	4	1
	IV	Chemical Safety & Ethical Handling of Chemicals		1
PSC4TOP & PSC4SOP		Practical	4	8
PSC4NPP0 & (PSC4IPP or PSC4RMP)		Practical	4	8

- 1. Credit based semester and grading system with effect from the academic year 2023-2024.
- 2. As per the credit system directives each credit will correspond to 15 hours of lectures or 30 hours of practical work.
- 3. Each student is expected to take 4 credits per theory paper and 2 credits per practical per semester.
- 4. At the end of each semester each student will be examined both in the theory and in the practical.
- 5. For the award of first class, the candidate must obtain at least 50% marks in the theory papers at the Semester I, II, III and IV of the M.Sc. examination taken together, in addition to the marks prescribed for the first class and the other rules of passing in the concerned regulation of the standard of passing.
- 6. The candidate is expected to submit a journal certified by the Head of the Department /institution at the time of the practical examination.
- 7. A candidate will not be allowed to appear for the practical examination unless he/she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.
- 8. Use of non-programmable calculator is allowed both at the theory and the practical examination.

Scheme of Examination for M.Sc. Organic Chemistry Semester III and IV

Internal Theory examination (40 Marks)

Sr. No.	Particular	Marks
01	One periodical class test / online examination to be conducted in the given semester	20 Marks
02	 Any one tools out of these (15 Marks each) Group/ Individual Project Presentation and write up on the selected topics of the subjects / Case studies. Test on Practical Skills Open Book Test 	15 Marks
03	Active participation of student	05 Marks

There will not be any internal examination for practical.

External Theory Examination (60 Marks)

Paper	Time allotted in hours	Maximum marks
Paper- I	2.5	60
Paper-II	2.5	60
Paper-III	2.5	60
Paper-IV	2.5	60

It is recommended that a total of five questions be set, based on the syllabus with due weightage to the number of lectures allotted per topic. The candidates are expected to answer all five questions. Question 5 will be based on all four units and the remaining questions will be based on the units as indicated below

Question No.	Semester- III	Semester- III
01	Unit I	Unit I
02	Unit II	Unit II
03	Unit III	Unit III
04	Unit IV	Unit IV
05	From all four units	From all four units

Semester End Practical Examination (50 Marks)

Laboratory Work: 40 Marks

Journal: 05 Marks

Viva: 05 Marks

The practical examination will be held for two days as described below. The candidates will be examined practically and orally on each day.

Paper	Day	Experiments	Time duration in hours	Maximum marks
I	Day-1 Morning	01	3.5	50
II	Day-1 Evening	01	3.5	50
III	Day-2 Morning	01	3.5	50
IV	Day-2 Evening	01	3.5	50

M.Sc. Organic Chemistry Semester III

Course Code - PSC3TOC

Paper I- Theoretical Organic Chemistry-I

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Explain the structure, generation, stability and reactions of organic reactive intermediates and importance of neighbouring group participation, role of FMOs.	Understand
CO2	Apply the principles of photochemistry to carbonyl compounds, olefins, arenes and radical reactions.	Apply
CO3	Identify pericyclic reactions and describe cycloaddition reactions, electrocylic reactions and sigmatropic rearrangements	Apply
CO4	Analyze conformation of medium size ring, fused ring, bridge ring, steroids and reactivity of addition, elimination, rearrangement and reduction with stereoselective and stereospecific reactions.	Analyse

Unit	Course Description	Hrs
1	Organic reaction mechanisms	
1	 1.1 Organic reactive intermediates: Methods of generation, structure, stability and important reactions involving carbocations, nitrenes, carbenes, arynes and ketenes. (6L) 1.2 Neighbouring group participation: Mechanism and effects of anchimeric assistance, NGP by unshared/ lone pair electrons, σ-bonds with special reference to norbornyl and bicyclo[2.2.2]octyl cation systems (formation of non-classical carbocation). [2L] 	

Role of FMOs in organic reactivity: Reactions involving hard and 1.3 soft electrophiles and nucleophiles, alpha effect. [2L] Pericyclic reactions: Introduction and classification of pericyclic reaction. Thermal reactions. Recapitulation and photochemical Explanations for Woodward-Hoffmann Rules The Aromatic Transition structures [Huckel and Mobius] Frontier Orbitals Correlation Diagrams, FMO and PMO approach Molecular orbital symmetry, Frontier orbital of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system. [5L] 2 **Pericyclic reactions 2.1 Cycloaddition reactions:** Supra and antra facial additions, 4n and 4n+2 15 Systems. Diels-Alder reactions (Diene, Dienophile, approach, stereochemistry, endo rule, Intramolecular Dielsregioselectivity/effect of substituents) Synthetic Equivalence in D-A Reaction (ethylene equivalent-Vinyl sulfone, acetylene equivalent-Vinyl sulfoxide, allene equivalent-Vinyl phosphonium salt), 2+2 Cycloadditions: Photocycloadditions, Ketenes, 1,3-Dipolar cycloadditions and cheletropic reactions. [7L] 2.2 Electrocyclic reactions: Conrotatory and disrotatary motions, torquoselectivity, (4n) π and (4n+2) π electrons and allyl systems. Synthesis of endiandric acid A from an acyclic polyene. [3L] 2.3 Sigmatropic rearrangements: H-shifts and C- shifts, supra and antarafacial migrations, Alder 'ene' Reaction, Cope (including oxy-Cope and aza- Cope), Claisen and Sommelet-Hauser rearrangements. Synthesis of Citral from 3-

methylbut -2-en-1-ol and 3-methylbut-2-en1a0l. [5L]

3	Stereochemistry-I	15
	3.1 Steric effect of S _N 2 and Ez reactions. Stereochemistry of disubstituted	
	cyclohexanone. ¹³ C NMR signals in 1,1-dimethyl cyclohexanone.	
	Stereochemistry of syn-addition reactions. [3L] Stereochemistry of fused	
	ring and bridged ring compounds: decalins, hydrindanes,	
	perhydroanthracenes, steroids, and Bredt's rule. [5L]	
	3.2 Anancomeric systems, Effect of conformation on reactivity of	
	cyclohexane derivatives in the following reactions (including mechanism):	
	electrophilic addition, elimination, molecular rearrangements, reduction of	
	cyclohexanones (with LiAlH4, selectride and MPV reduction) and oxidation	
	of cyclohexanols. [5L]	
	3.3 Stereospecific and Stereoselective reactions	
	with specific examples. [2L]	
4	Photochemistry	15
	4.1 Principles of photochemical reaction: Grotthuss draper law, Stark -	
	Einstein law, Beer- Lambert law, Types, Examples and Applications of	
	photochemical reaction, experimental set up for photochemical reactions. [3L]	
	4.2 Photochemistry of carbonyl compounds: $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions,	
	Norrish- I and Norrish-II cleavages, Paterno-Buchi reaction. Photoreduction,	
	calculation of quantum yield, photochemistry of enones, photochemical	
	rearrangements of α , β - unsaturated ketones and cyclohexadienones. Photo	
	Fries rearrangement, Barton reaction, DeMayo reaction. [7L]	
	4.3 Photochemistry of olefins: cis-trans isomerizations, dimerizations,	
	hydrogen abstraction, addition and Di- π - methane	

rearrangement including oxa- di- π --methane and aza-di- π --methane.

Photochemical Cross-Coupling of Alkenes, Photodimerisation of alkenes.

[3L]

4.4 Photochemistry of arenes: 1, 2-, 1, 3- and 1, 4- additions.

Photocycloadditions of aromatic Rings. [1L]

4.5 Singlet oxygen and photo-oxygenation

reactions. Photochemically induced Radical Reactions. [IL]

- 1. March's Advanced Organic Chemistry, Jerry March, sixth edition, 2007, John Wiley and sons.
- 2. A guide to mechanism in Organic Chemistry, 6th edition, 2009, Peter Sykes, Pearson education, New Delhi.
- 3. Advanced Organic Chemistry: Reaction Mechanisms, R. Bruckner, Academic Press (2002)
- 4. Mechanism and theory in Organic Chemistry, T. H. Lowry and K. C. Richardson, Harper and Row.
- 5. Organic Reaction Mechanism, 4th edition, V. K. Ahluvalia, R. K. Parashar, Narosa Publication.
- 6. Reaction Mechanism in Organic Chemistry, S.M. Mukherji, S.P. Singh, Macmillan Publishers, India.
- 7. Organic Chemistry, Part A and B, Fifth edition, 2007, Francis A. Carey and Richard J. Sundberg, Springer.
- 8. Carbenes, Nitrenes and Arynes. Von T. L. Gilchrist, C. W. Rees. Th. Nelson and Sons Ltd., London 1969.
- 9. Organic reactive intermediates, Samuel P. MacManus, Academic Press.
- 10. Organic Chemistry, J. Clayden, S. Warren, N. Greeves, P. Wothers, 1st Edition, Oxford University Press (2001)
- 11. Organic Chemistry, Seventh Edition, R.T. Morrison, R. N. Boyd & S. K. Bhattacharjee, Pearson.Advanced Organic Chemistry: Reactions & Mechanisms, second edition, B. Miller and R. Prasad, Pearson.
- 12. Organic reactions & their mechanisms, third revised edition, P.S. Kalsi, New Age International Publishers.
- 13. Organic Chemistry: Structure and Function, P. Volhardt and N. Schore, 5th Edition, 2012
- 14. Organic Chemistry, W. G. Solomons, C. B. Fryhle, , 9th Edition, Wiley India Pvt. Ltd., 2009

- 15. Pericyclic Reactions, S. Sankararaman, Wiley VCH, 2005.
- 16. Advanced organic chemistry, Jagdamba Singh L. D. S. Yadav, Pragati Prakashan, 2011
- 17. Pericyclic reactions, Ian Fleming, Oxford University press, 1999.
- 18. Pericyclic reactions-A mechanistic approach, S. M. Mukherji, Macmillan Co. of India 1979.
- 19. Organic chemistry, 8th edition, John McMurry.
- 20. Modern methods of Organic Synthesis, 4th Edition W. Carruthers and Iain Coldham, Cambridge University Press 2004.
- 21. Modern physical chemistry, Eric V Anslyn, Dennis A. Dougherty, University science books, 2006
- 22. Physical Organic Chemistry, N. S. Isaacs, ELBS/Longman
- 23. Stereochemistry of Carbon Compounds: Principles and Applications, D, Nasipuri, 3rd edition, New Age International Ltd.
- 24. Stereochemistry of Organic Compounds, Ernest L. Eliel and SamuelH. Wilen, Wiley-India edit
- 25. Stereochemistry, P. S. Kalsi, 4th edition, New Age International Ltd
- 26. Organic Stereochemistry, M. J. T. Robinson, Oxford University Press, New Delhi, India edition, 2005
- 27. Bioorganic, Bioinorganic and Supramolecular chemistry, P.S. Kalsi and J.P. Kalsi. New Age International Publishers
- 28. Supramolecular Chemistry; Concepts and Perspectives, J. M. Lehn, VCH.
- 29. Crown ethers and analogous compounds, M. Hiraoka, Elsevier, 1992.
- 30. Large ring compounds, J.A.Semlyen, Wiley-VCH, 1997.
- 31. Fundamentals of Photochemistry, K. K. Rohtagi-Mukherji, Wiley-Eastern
- 32. Essentials of Molecular Photochemistry, A. Gilbert and J. Baggott, Blackwell Scientific Publication.
- 33. Molecular Photochemistry, N. J. Turro, W. A. Benjamin.
- 34. Introductory Photochemistry, A. Cox and T. Camp, McGraw-Hill
- 35. Photochemistry, R. P. Kundall and A. Gilbert, Thomson Nelson.
- 36. Organic Photochemistry, J. Coxon and B. Halton, Cambridge University Press.
- 37. Molecular Orbitals and Organic Chemical Reactions by Ian Fleming (Wiley A john Wiley and Sons, Ltd., Publication)

Course Code- PSC3SOC Paper II - Synthetic Organic Chemistry –I

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Summarize generation, stability, structure, stereochemical aspects of freeradicals, its characteristic reactions and use in organic synthesis.	Understand
CO2	Explain preparation of organometallic compound, its applications, mechanism and regiochemistry of reactions involving metals/non-metalsin organic synthesis.	Understand
CO3	Compare between enamines and enolates, methods of preparation, applications with stereochemical aspects in synthetic reactions	Analyse
CO4	Predict the products of name reactions, domino reactions, click reactions, multicomponent reactions and describe the mechanisms showing how the products are formed	Create

Unit	Course Description	Hrs
1	Name reactions with mechanism and application	
	1.1 Mukaiyama esterification, Mitsonobu reaction, Darzen's Glycidic Ester	15
	Synthesis, Ritter reaction, Koch- Haaf Carbonylation reaction, Eschenmoser-	
	Tanabe frangmentation. [5L]	
	1.2 Domino reactions: Characteristics; Nazerov cyclization [3L]	
	1.3 Multicomponent reactions: Strecker Synthesis, Ugi 4CC, Biginelli	
	synthesis, Boger synthesis, Pictet-Spengler synthesis. [5L]	
	1.4 Click Reactions: Characteristics; Huisgen 1,3-Dipolar Cycloaddition	
	[2L]	
2	Radicals in organic synthesis	
	2.1 Introduction: Generation, stability, reactivity and structural and	15
	stereochemical properties of free radicals, Persistent and charged radicals,	
	Electrophilic and	
	nucleophilic radicals.	

	[3L]	
	2.2 Radical Initiators: azobisisobutyronitrile (AIBN) and dibenzoyl peroxide.	
	[1L]	
	2.3 Characteristic reactions: Free radical substitution, addition to	
	multiplebonds. Radical chain reactions, Radical halogenation of hydrocarbons	
	(Regioselectivity), radical cyclizations, autoxidations: synthesis of cumene	
	hydroperoxide from cumene.	
	Free radical displacement, Fragmentation, reduction, and	
	rearrangements.	
	[4L]	
	2.4 Radicals in synthesis: Inter and intra molecular C-C bond formation via	
	mercuric hydride, tin hydride, thiol donors. Cleavage of C-X, C-Sn, C-Co, C-S,	
	O-O bonds. Oxidative coupling, C-C bond formation in aromatics:	
	SRNAr reactions	
	[4L]	
	2.5 Hunsdiecker reaction, Pinacol coupling, McMurry coupling,	
	Sandmeyer reaction, Acyloin condensation.	
	[3L]	
3	Enamines, Ylides and α-C-H functionalization	
	3.1 Enamines: Generation & application in organic synthesis with	15
	mechanistic pathways, Stork enamine reaction. Reactivity, comparison between	
	enamines and enolates. Synthetic reactions of enamines including asymmetric	
	reactions of chiral enamines derived from chiral secondary amines.	
	[4L]	
	3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation and their synthetic	
	applications along with their stereochemical aspects. Horner-Wadsworth-	
	Emmons Reaction, Barton-Kellogg olefination.	
	Sommelet-Hauser rearrangement reaction ,Thia-Sommelet-	

Hauser rearrangement reaction, Corey-Chaykovsky reagent as well as reaction [6L] 3.3 α-C-H functionalization: By nitro, sulfoxide, sulfone and phosphonate groups, applications in C-C bond formation. Bamford-Stevens reaction, Julia olefination and its modification, Steven's rearrangement. Thia-Steven's rearrangement. [5L] Metals / Non-metals in organic synthesis 4 4.1 Mercury in organic synthesis: Mechanism and regiochemistry of 15 oxymercuration and demercuration of alkenes, mercuration of aromatics, transformation of aryl mercurials to aryl halides. Organomercurials as carbene transfer reagents. [3L] 4.2 Organoboron Mechanism and regiochemistry of compounds: hydroboration of alkenes and alkynes, asymmetric hydroboration using chiral boron reagents, 9- BBN hydroboration, oxazaborolidine (CBS catalyst) and functional group reduction by diborane. [3L] **4.3** Sulphur, Silicon And Phosphorus in Organic Chemistry Sulphoxide anion in a synthesis, anion from sulphone, sulphonium salts. Nucleophilic substitution at silicon, Peterson elimination, alkynyl silane, aryl silane, vinyl silane, witting reaction, Z- selective wittig reaction and E- Selective wittig reaction.(5L) **4.4 Organotin compounds:** Preparation of alkenyl and allyl tin compounds; application in C-C bond formation, in replacement of halogen by H at the same C atom. [2L] **Selenium in organic synthesis:** Preparation of selenols/selenoxide, selenoxide elimination to create unsaturation, selenoxide and seleno acetals as α-C-H activating groups 4.5 [2L] 16

- 1. Advanced Organic Chemistry, Part A and Part B: Reaction and Synthesis, Francis A. Carey, Richard J. Sundberg, 5th Edition, Springer Verlag
- 2. Modern Methods of Organic Synthesis, 4th Edition, W. Carruthers and Iain Coldham, Cambridge University Press, 2004.
- 3. Chem. Rev. 2002, 102, 2227-2302, Rare Earth Metal Triflates in Organic Synthesis, S. Kobayashi, M. Sugiura, H. Kitagawa, and W.W.L. Lam.
- 4. Organic Chemistry, Clayden Greeves Warren and Wothers, Oxford Press (2001).
- 5. Moder Organic Synthesis: An Introduction, G.S. Zweifel and M.H. Nantz, W.H. Freeman and Company, (2007).
- 6. Advanced Organic Chemistry: Reaction Mechanism, R. Bruckner, Academic Press (2002).
- 7. Principles of Organic Synthesis, R.O.C. Norman & J. M. Coxon 3rd Edn., Nelson Thornes
- 8. Organic Chemistry, 7th Edn, R. T. Morrison, R. N. Boyd, & S. K. Bhattacharjee, Pearson
- 9. Strategic Applications of Name Reactions in Organic Synthesis, L. Kurti & B. Czako (2005), Elsevier Academic Press
- 10. Advanced Organic Chemistry: Reactions & Mechanisms, 2nd Edn., B. Miller & R. Prasad, Pearson
- 11. Organic reactions and their mechanisms, 3rd revised edition, P.S. Kalsi, New Age International Publishers
- 12. Organic Synthesis: The Disconnection Approach, Stuart Warren, John Wiley & Sons, 2004
- 13. Name Reactions and Reagents in Organic Synthesis, 2nd Edn., Bradford P. Mundy, Michael G. Ellard, and Frank Favoloro, Jr., Wiley-Interscience
- 14. Name Reactions, Jie Jack Lie, 3rd Edn., Springer
- 15. Organic Electrochemistry, H. Lund, and M. Baizer, 3rd Edn., Marcel Dekker.

Course code - PSC3NPHS Paper III- Natural products Heterocyclic chemistry and Spectroscopy-I

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Explain the occurrence, structural features, and biological importance and multistep synthesis of natural products.	Understand
CO2	Draw conclusion based on evidence for structure elucidation and synthesis of natural products.	Analysis
CO3	Construct the names of heterocyclic compounds by IUPAC nomenclature and explain synthesis and reactivity of heterocyclic compounds	Analysis
CO4	Interpret the data for the structure elucidation of organic compounds based on UV, IR, ¹ H-NMR and ¹³ C-NMR.	Evaluate

Unit	Course Description	Hrs
1	Natural Product-I	
	1.1: Carbohydrates: Introduction to naturally occurring sugars:	15
	Deoxysugars, aminosugars, branched sugars. Structure elucidation of	
	lactose and Inositol (synthesis not expected).Structural features and	
	applications of inositol, starch, cellulose, chitin and heparin. (5L)	
	1.2: Natural pigments: General structural features, occurrence,	
	biological importance and applications of: carotenoids, anthocyanins,	
	quinones, flavones, pterins and porphyrins (chlorophyll). Structure	
	elucidation of β -carotene and Cyanin (with synthesis). (4L)	
	1.3: Terpenoids:Occurrence, classification, Stereochemistry, spectral	
	data and synthesis of	
	zingiberene. (2L)	

	1.4: Alkaloids: Occurrence and physiological importance of morphine	
	and atropine. Structure elucidation, spectral data and synthesis of morphine.	
	(3L)	
	Medicinal impotance of hygrine, quinine, and reserpine. (1L)	
2	Natural Product-II	
	2.1: Multi-step synthesis of natural products: Synthesis of the following	15
	natural products with special reference to reagents used, stereochemistry and	
	functional group transformations:	
	a) Corey synthesis of Longifolene from resorcinol	
	b) Gilbert-Stork synthesis of Griseofulvin from phloroglucinol	
	c) Corey's Synthesis of Caryophyllene from 2-Cyclohexenone	
	andIsobutylene	
	d) Synthesis of Juvabione from Limonene	
	e) Woodward synthesis of Colchicine (9L)	
	2.2: Prostaglandins: Classification, general structure and biological	
	importance. Structure elucidation of PGE1. (2L)	
	2.3: Insect Growth Regulators: General idea, structures of JH1, JH2 and	
	JH3. Synthesis of JH1 (2L)	
	2.4: Plant Growth Regulators: Structural features and applications of	
	Cytokinis brassinosteroids and triacontanol. Synthesis of triacontanol	
	(synthesis of stearyl magnesium bromide and 12- bromo-1-	
	tetrahydropyranyloxydodecane expected) (2L)	
3	Heterocyclic Chemistry-I	
	3.1: Heterocyclic compounds: Introduction, classification,	15
	Nomenclature of heterocyclic	15
	compounds of monocyclic (3-6 membered)	
	tompounds of monocyclic (3-6 memocred) 19	

	(Common, systematic (Hantzsch-Widman) and replacement		
	nomenclature). (3L)		
	3.2: Structure and nucleophilic ring opening reactions of aziridines,		
	oxiranes, oxetanes and azetidines. (2L)		
	3.3: Structure, reactivity, synthesis and reactions of pyridazine, pyrimidine,		
	pyrazine, pyrrole, pyrazoles, Imidazoles, triazole and tetrazole (9L)		
	3.4: Synthesis of Papavarin. (1L)		
4	Advanced Spectroscopy-I		
	4.1: Proton NMR spectroscopy: Recapitulation, chemical and magnetic	15	
	equivalence of protons, First order, second order, Spin system notations		
	(A2, AB, AX, AB2, AX2, AMX and A2B2-A2X2		
	spin systems with suitable examples). Long range coupling (Allylic		
	coupling, 'W' coupling and Coupling in aromatic and hetero aromatic		
	systems), Temperature effects, Simplification of complex spectra, nuclear		
	magnetic double resonance, chemical shift reagents. (6L)		
	4.2: ¹³ C–NMR spectroscopy: Recapitulation, equivalent and non-		
	equivalent carbons (examples of aliphatic and aromatic compounds), ¹³ C-		
	chemical shifts, calculation of ¹³ C- chemical shifts of aromatic carbons,		
	heteronuclear coupling of carbon to ¹⁹ F and ³¹ P. (4L)		
	4.3: Introduction of Mass Spectroscopy. (1L)		
	4.4: Spectral problems based on UV, IR, ¹ HNMR and ¹³ CNMR and Mass		
	Spectroscopy. (4L)		

- 1. Natural product chemistry, A mechanistic, biosynthetic and ecological approach, Kurt B.G. Torssell, Apotekarsocieteten Swedish Pharmaceutical Press.
- 2. Natural products chemistry and applications, Sujata V. Bhat, B.A. Nagasampagi and S. Meenakshi, Narosa Publishing House, 2011.
- 3. Organic Chemistry Natural Products Y₀ lu me-II, O. P. Agarwal, Krishna Prakashan, 2011.

- 4. Chemistry of natural products, F. F. Bentley and F. R. Dollish, 1974
- 5. Natural Product Chemistry Vol.1 and 2, K. Nakanishi J. Goto. S. Ito Majori and S. Nozoo, Academic Press, 1974.
- 6. Chemistry of natural products, V.K. Ahluwalia, Vishal Publishing Co. 2008.
- 7. Natural Products: Chemistry and Biological Significance Interscience, J. Mann, R.S. Davidson, J.B. Hobbs, D.V. Banthrope and J. B. Harborne, Longman, Essex, 1994.
- 8. Organic Chemistry, Vol 2, I.L. Finar, ELBS, 6th edition, Pearson.
- 9. Stereoselective Synthesis: A Practical Approach, M. Nogradi, Wiley-VCH, 1995.
- 10. Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.
- 11. Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas, Ed. Kurt Hostettmann, M.P. Gupta and A. Marston, Harwood Academic Publishers.
- 12. Introduction to Flavonoids, B.A. Bohm, Harwood Academic Publishers, 1998.
- 13. New Trends in Natural Product Chemistry, Atta-ur-Rahman and M.I. Choudhary, Harwood Academic Publishers, 1998.
- 14. Total. Synthesis of Longifolene, J. Am. Chem. Soc., E. J. Corey, M. Ohno, R. B. Mitra, and P. A. Vatakencherry. 1964, 86, 478.
- 15. Total. Synthesis of Longifolene, J. Am. Chem. Soc. 1961, 83, 1251.
- 16. The structure and total synthesis of 5-Vetivone, J. A. Marshall and P. C. Johnson, J. Org. Chem., 35, 192 (1970).
- 17. Total synthesis of spirovetivanes, J. Am. Chem. Soc. 1967, 89, 2750.
- 18. The Total Synthesis of Reserpine, Woodward, R. B.; Bader, F. E.; Bickel, H., Frey, A. J.; Kierstead, R. W. Tetrahedron 1958, 2, 1-57.
- 19. Total synthesis of Griseofulvin, Stork, G.; Tomasz, M. J. Am. Chem. Soc. 1962, 84, 310.
- Synthesis of (±)-4-demethoxydaunomycinone, A. V. Rama Rao, G. Venkatswamy, S. M. Javeed M., V. H. Deshpande, B. Ramamohan Rao, J. Org. Chem., 1983, 48 (9), 1552.
- 21. The Alkaloids, The fundamental Chemistry A biogenetic approach, Marcel Dekker Inc. New York, 1979.
- 22. Comprehensive Organic Chemistry by Barton and Olis, Pergamon Press, Oxford, 1979.
- 23. Medicinal Natural Products, a Biosynthetic Approach, Derick Paul, John Wiley and Sons, 2002.
- 24. Biosynthesis of Natural Products, Mannitto Paolo, Ellis Horwoocl Limited, 1981.
- 25. Selected Organic synthesis, Ian Fleming, John Wiley and Sons, 1973.
- 26. Total synthesis of Natural Products, J. Apsimon, John Wiley and Sons.
- 27. The Logic of Chemical Synthesis, E. J. Corey and Xue-Min Cheng, Wiley Interscience.
- 28. Classics in Total Synthesis, K. C. Nicolaou and E. J. Sorensen, Weinhem: VCH, 1996.
- 29. Spectroscopy of Organic compounds, P.S. Kalsi, New Age International Pub. Ltd. And Wiley Eastern Ltd., Second edition, 1995.

- 30. Applications of Absorption Spectroscopy of Organic compounds, J. R. Dyer, Prentice Hall of India, 1987.
- 31. Spectrometric Identification of Organic compounds, R.M. Silverstein and others, John Wiley and Sons Inc., 5th ed., 1991
- 32. Absorption spectroscopy of organic Molecules, V.M. Parikh, 1974.
- 33. Spectroscopic methods in organic chemistry, Williams and Fleming, Tata McGraw Hill, 4th ed, 1989.
- 34. Organic spectroscopy, William Kemp, ELBS, 3rd ed., 1987.
- 35. Organic structures from spectra, L. D. Field, S. Sternhell, John R. Kalman, Wiley, 4th ed., . 3122
- 36. Introduction to spectroscopy, Donald L. Pavia, Gary M. Lampman George S. Kriz, James R. Vyvyan, 4th ed., 2009.
- 37. Organic spectroscopic structure determination: a problem-based learning approach Douglass F. Taber, Oxford University Press, 17-Sep-2007.
- 38. Organic Spectroscopy: Principles And Applications, Jag Mohan, Alpha Science International Ltd., 30-Mar-2004
- 39. Alkaloids, V.K. Ahuluwalia, Ane Books Pvt. Ltd.
- 40. Biotransformations in Organic Chemistry, 5th Edition, Kurt Faber, Springer
- 41. Structure Determination of Organic Compounds, E Pretsch, P. Buhlmann, C. Affolter, Springer

Course code - PSC3MBG Paper IV- Medicinal, Biogenesis and Green Chemistry

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Demonstrate the knowledge of the twelve principles of green chemistry which they can practice to a range of workplace for a safer less toxic and healthier environment.	Understand
CO2	Explain the basic terms used in medicinal chemistry, the pharmacokinetics of drug, drug structure activity relationship, physical chemical parameters of drugs and procedures in drug design.	Understand
CO3	Apply skills required for drug design, development of modern methods of synthesis required for employment in the pharmaceutical industries.	Apply
CO4	Build the Biogenesis and biosynthesis of natural products by acetate pathway, shikimate pathway and mevalonate it pathway.	Apply

Unit	Course Description	Hrs
1	Drug discovery, design and development	
	1.1: Introduction, important terms used in medicinal chemistry:	15
	receptor, therapeutic index, bioavailability, drug assay and drug potency.	
	Drug receptor interactions enzyme inhibitor and drug target. Basic	
	pharmacokinetics: drug absorption, distribution, metabolism	
	(biotransformation) and elimination. Physical and chemical parameters	
	like solubility, lipophilicity, ionization, pH, redox potential, H- bonding,	
	partition coefficient and isomerism in drug distribution and drug-	
	receptor binding. (7L)	
	1.2: Procedures in drug design: Drug discovery without a lead:	
	Penicillin, Librium ² . ³ Lead	

	discovery: random screening, non-random (or targeted) screening. Lead	
	modification: Identification of the pharmacophore, Functional group	
	modification. Structure-activity relationship, Structure	
	modification to increase potency and therapeutic index: Homologation, chain	
	branching, ring-chain transformation. Combinatorial chemistry- general	
	aspects, split synthesis, peptide and non peptide libraries (8L)	
2	Drug design, development and synthesis	
	2.1: Introduction to quantitative structure activity relationship studies. QSAR	15
	parameters: - steric effects: The Taft and other equations; Methods used to	
	correlate regression parameters with biological activity: Hansch analysis- A	
	linear multiple regression analysis. (5L)	
	2.2: Introduction to modern methods of drug design and synthesis- computer	
	aided molecular graphics based drug design, drug design via	
	enzymeinhibition (reversible and irreversible), bioinformatics and drug	
	design. (3L)	
	2.3: Concept of prodrugs and soft drugs. (a) Prodrugs: Prodrug design, types	
	of prodrugs, functional groups in prodrugs, advantages of prodrug use. (b)	
	Soft	
	Drugs: concept and properties.(3L)	
	2.4: Synthesis and application of the following drugs: Phenacetine,	
	Benadryl, Veronal, Metharbital, Coramine, Sulphanilamide, Tolbutamide.	
	(4L)	
3	Biogenesis and biosynthesis of natural products	
	3.1: Primary and secondary metabolites and the	15
	j j	10

	biosynthesis.(1L)	
	3.2: Acetate pathway: Biosynthesis of malonyl CoA, saturated fatty acids,	
	prostaglandins from arachidonic acid, aromatic polyketides (3L)	
	3.3: Shikimic Acid pathway: Biosynthesis of shikimic acid, aromatic amino	
	acids,	
	cinnamic acid and its derivatives, lignin and lignans, benzoic acid and its	
	derivatives, flavonoids and isofalvonoids. (4L)	
	3.4 Mevalonate pathway: Biosynthesis of mevalonic acid, monoterpenes-	
	geranyl	
	cation and its derivatives, sesquiterpenes-farnesyl cation and its derivatives,	
	triterpenes, tetraterpenes and its derivatives diterpenes. (7L)	
4	Green chemistry	
-	4.1: Introduction, basic principles of green chemistry. Designing a green	15
	synthesis: Green starting materials, green reagents, green solvents and	13
	reaction conditions, green catalysts.(1L)	
	4.2: Use of the following in green synthesis with suitable examples:	
	a) Green reagents: dimethylcarbonate, polymer supported reagents.	
	b) Green catalysts: Acid catalysts, oxidation catalysts, basic catalysts,	
	phase transfer catalysts [Aliquat 336, benzyltrimethyl ammonium	
	chloride (TMBA), Tetra-n- butyl ammonium chloride, crown ethers],	
	biocatalysts.	
	c) Green solvents: water, ionic liquids, deep eutectic solvents,	
	supercritical carbon dioxide.	
	d) Solid state reactions: solid phase synthesis, solid supported synthesis	
	a) sond state reactions, sond phase symmests, sond supported symmests	
	e) Microwave assisted synthesis: reactions in water, reactions in organic solvents, solvent free reactions.	
	e) Surfactants for carbon dioxide- replacing smoke producing and ozone	
	depleting solvents with CO ₂ for precision cleaning and dry cleaning	
	of garments.	

f) An efficient green synthesis of a compostable and widely
applicable plastic (poly lactic acid) made from corn.(11L)
Ultrasound assisted reactions.
4.3: Comparison of traditional processes versus green processes in the
syntheses of ibuprofen, adipic acid, 4-aminodiphenylamine, p-
bromotoluene and
benzimidazole. (3L)

Course code - PSC3BIC Paper IV- Bioorganic Chemistry

COS.	After successful completion of this course	Bloom	
	Students will be able to,	Taxonomy	
		Level (BTL)	
CO1	Summarize amino acids, peptides, proteins and nucleic acids	Understand	
	and chemical synthesis of oligonucleotides.		
CO2	Explain importance of enzymatic reactions and factors	Understand	
	affecting enzyme kinetics.		
CO3	Relate the importance of enzymes in the synthesis of organic	Understand	
	compound.		
CO4	Explain biological importance and metabolism of	Evaluate	
	carbohydrates and lipids.		

Unit	Course Description	Hrs
1	Biomolecules-I	
	1.1 Amino acids, peptides and proteins: Chemical and enzymatic	15
	hydrolysis of	
	proteins to peptides, amino acid sequencing.	
	Secondary structure of	
	proteins, forces responsible for holding of secondary structures, α - helix, β -	
	sheets, super secondary structure. Tertiary structure of protein: folding and	
	domain structure. Quaternary structure.	
	[2L]	
	1.2 Nucleic acids: Structure and function of physiologically important	
	nucleotides (c-AMP, ADP, ATP) and nucleic acids (DNA and RNA),	
	replication, genetic code, protein biosynthesis, mutation.	
	[3L]	
	1.3 Structure: Purine & pyrimidine bases, ribose, deoxyribose, nucleosides	
	and nucleotides (ATP, CTP, GTP, TTP, UTP) formation of polynucleotides	
	strand with its shorthand representation.	
	[3L]	
	1.4 RNAs (various types in prokaryotes and eukaryotes) m- RNA	
	and r- RNA	
	– general account, t- RNA-clover leaf model, Ribozymes.	
	[2L]	
	1.5 DNA: Physical properties – Effect of heat on physical properties of	
	DNA	
	(Viscosity, buoyant density and UV absorption), Hypochromism,	
	Hyperchromism and Denaturation of DNA. Reactions of nucleic acids (with DPA and Orcinol).	
	[2L]	
	1.6 Chemical synthesis of oligonucleotides: Phosphodiester,	
	Phosphotriester, Phosphoramidite and H- phosphonate methods including	
	solid phase approach.	
	[3L]	

2	Biomolecules-II	
	2.1 Chemistry of enzymes: Introduction, nomenclature, classes and	15
	general	
	types of reactions catalyzed by enzymes. Properties of enzymes: a)	
	enzyme efficiency/ catalytic power	
	b) enzyme specificity; Fischer's 'lock and key' and Koshland 'induced fit'	
	hypothesis. Concept and identification of active site.	
	[6L]	
	2.2 Factors affecting enzyme kinetics: Substrate concentration, enzyme	
	concentration, temperature, pH, product concentration etc.	
	Reversible and	
	irreversible inhibition. [4L]	
	2.3 Mechanism of enzyme action: transition-state theory, orientation	
	and steric	
	effect, acid-base catalysis, covalent catalysis, strain or distortion.	
	Mechanism of chymotrypsin catalyzed hydrolysis of a peptide bond.	
	[5L]	
3	Biomolecules-III	
	3.1 Chemistry of coenzymes. Structure, mechanism of action and bio-	15
	modeling	
	studies of the following coenzymes: nicotinamide adenine dinucleotide, flavin adenine dinucleotide, thiamine pyrophosphate,	
	pyridoxal phosphate, Vitamin B12, biotin, lipoic acid, Coenzyme A. [12L]	
	3.2 Oxidative phosphorylation, chemiosmosis, rotary model for ATP	
	synthesis and role of cytochrome in oxygen activation.[3L]	
4	Biomolecules-IV	
	4.1 Carbohydrates: Biological importance of carbohydrates,	15
	Metabolism, Cellular currency of energy (ATP), Glycolysis, Alcoholic	
	and lactic acid fermentation, Krebs cycle. [8L]	
	4.2 Lipids: Biological importance of triglycerids and phosphoglycerides	
	and cholesterol: Lipid membrane, Liposomes and their	
	biological	
1	functions and underlying applications. [7L]	

- 1. Nelson, D. L, and Cox, M. M, (2008) Lehninger principles of Biochemistry 5th Edition, W. H. Freeman and Company, NY., USA.
- 2. Stryer, Lubert; Biochemistry; W. H. Freeman publishers.
- 3. Voet, D. and J. G. Voet (2004) Biochemistry, 3rd Edition, John Wiley & sons, Inc. USA.
- 4. Zubay, Goffrey L; Biochemistry; Wm C. Brown publishers.
- 5. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J-M Basset, Chem. Rev. 2011, 111, 3036-3075;
- 6. R. B. Nasir Baig and R. S. Varma, Chem. Comm., 2013, 49, 752-770;
- 7. M. B. Gawande, A. K. Rathi, P. S. Varma, Appl. Sci., 2013, 3, 656-674;
- 8. J. Govan and Y. K. Gun'ko, Nanomaterials, 2014, 4, 222-214.
- 9. K. Philippot and P. Serp, Nanomaterials in catalysis, First Edition. Edited by P. Serp and K. Philippot; 2013 Wiley –VCH Verlag GmbH & Co. K GaA
- 10. D. Astruc, Nanomaterials and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, 1-48;
- 11. C. N. R. Roa, A. Muller and A. K. Cheetham, The chemistry of Nanomaterials, Wiley-VCH Verlag GmbH & Co. KGaA, 2005, 1-11;
- 12. The organic chemistry of drug design and drug action, Richard B. Silverman, 2nd edition, Academic Press
- 13. Medicinal chemistry, D.Sriram and P. Yogeeswari, 2nd edition, Pearson
- 15. Burger's medicinal chemistry and drug discovery. by Manfred E. Wolf
- 16. Introduction to Medicinal chemistry. by Graham Patrick
- 17. Medicinal chemistry-William O. Foye
- 18. T. B. of Organic medicinal and pharmaceutical chemistry-Wilson and Gisvold's (Ed. Robert F. Dorge)
- 19. An introduction to medicinal chemistry-Graham L. Patrick, OUP Oxford, 2009.
- 20. Principles of medicinal chemistry (Vol. I and II)-S. S. Kadam, K. R. Mahadik and K.G. Bothara, Nirali prakashan.
- 21. Medicinal chemistry (Vol. I and II)-Burger
- 22. Strategies for organic drug synthesis and design D. Lednicer Wiley
- 23. Pharmacological basis of therapeutics-Goodman and Gilman's (McGraw Hill)
- 24. Enzyme catalysis in organic synthesis, 3rd edition. Edited by Karlheinz Drauz, Harold Groger, and Oliver May, Wiley-VCH Verlag GmbH & Co KgaA, 2012.
- 25. Biochemistry, Dr U Satyanarayan and Dr U Chakrapani, Books and Allied (P) Ltd.
- 26. Bioorganic, Bioinorganic and Supramolecular chemistry, P.S. Kalsi and J.P. Kalsi. New Age International Publishers
- 27. The Organic Chemistry of Enzyme-Catalysed Reactions, Academic Press, By Richard B. Silverman
- 28. Enzymes: Practical Introduction to structure, mechanism and data analysis, By Robert A. Copeland, Wiley-VCH, Inc.
- 29. The Organic Chemistry of Biological Pathways By John McMurry, Tadhg Begley by Robert and company publishers
- 14. An introduction to drug design-S. S. Pandeya and J. R. Dimmock (New age

- 30. Bioorganic Chemistry- A practical approach to Enzyme action, H. Dugas and C. Penny. Springer Verlag, 1931
- 31. Biochemistry: The chemical reactions in living cells, by E. Metzler Academic Press.
- 32. Concepts in biotechnology by D. Balasubrarnanian & others
- 33. Principals of biochemistry by Horton & others.
- 34. Bioorganic chemistry A chemical approach to enzyme action by Herman Dugas and Christopher Penney.
- 35. Medicinal Natural Products: A Biosynthetic Approach by Paul M. Dewick. 3rd Edition, Wiley.
- 36. Natural product chemistry, A mechanistic, biosynthetic and ecological approach, Kurt B. G. Torssell, Apotekarsocieteten Swedish pharmaceutical press.
- 37. Natural products Chemistry and applications, Sujata V Bhat, B.A. Nagasampagi and S. Meenakshi, Narosa Publishing House.
- 38. Natural Products Volume- 2, By O. P. Agarwal.
- 39. Chemistry of Natural Products, F. F. Bentley and F. R. Dollish, 1974.
- 40. Natural Product Chemistry Vol.1 and 2, K. Nakanishi J. Goto. S. Ito Majori and S. Nozoo, Academic Press, 1974.
- 41. Chemistry of natural products, V.K. Ahluwalia, Vishal Publishing Co.
- 42. Green Chemistry: An Introductory Text, 2nd Edition, Published by Royal Society of Chemistry, Authored by Mike Lancater.
- 43. Organic synthesis in water. By Paul A. Grieco, Blackie.
- 44. Green chemistry, Theory and Practical, Paul T. Anastas and John C. Warner.
- 45. Anamaya Publishers, New Delhi.
- 46. 46. An introduction to green chemistry, V. Kumar, Vishal Publishing Co.
- 47. 47. Organic synthesis: Special techniques. V.K.Ahulwalia and Renu Aggarwal.

nd

Semester III: Practicals

Course Outcomes

COS.	After successful completion of this course	Bloom
	Students will be able to,	Taxonomy
		Level (BTL)
CO1	Identify the chemical type of components present the in ternary mixture of organic compounds.	Apply
CO2	Apply skills in detection, identification and separation of organiccompounds of ternary mixtures by microscale technique.	Apply

Separation of a ternary mixture of organic compounds using micro-scale technique (minimum 8 experiments)

1. Separation of a ternary mixture (S-S-S, S-S-L, S-L-L and L-L-L) (for solid mixture: water insoluble/ soluble including carbohydrates) based upon differences in the physical and the chemical properties of the components.

Course Course Outcomes

COS.	After successful completion of this course Students will be able to	Bloom Taxonomy
	200000000000000000000000000000000000000	Level (BTL)
CO1	Identify the chemical type of components present the in ternary mixture of organic compounds.	Apply
CO2	Demonstrate the practical aspects in the preparation of the organiccompounds and their derivatives	Understand

Identification of any unknown organic compound with preparation, purification and determination of physical constant of its derivatives.

Course code: PSC3NPP & (PSC3MBP or PSC3BIP) Course Outcomes

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy
		Level (BTL)
CO1	Demonstrate the skills in organic preparations required for pursuing a career in the pharmaceutical, chemical	Understand
	industry, research etc.	
CO2	Make use of column chromatography, crystallization steam and vacuum distillation for purification of the organic compounds	Apply
CO3	Identify the prepared organic compounds by Thin Layer Chromatography	Apply

Single step organic preparation (1.0 g scale) involving purification by Steam distillation / Vacuum distillation or Column chromatography (Minimum 8 experiments)

- 1. Preparation of acetanilide from aniline and acetic acid using Zn dust. (Purification by column chromatography)
- 2. Preparation of 1-nitronaphthalene from naphthalene. (Purification by steam distillation)
- 3. Preparation of acetyl ferrocene from ferrocene. (Purification by column chromatography)
- 4. Preparation of 3-nitroaniline from 1, 3-dinitrobenzene. (Purification by column chromatography)
- 5. Preparation of benzyl alcohol from benzaldehyde. (Purification by vacuum distillation).
- 6. Preparation of methyl salicylate from salicylic acid. (Purification by vacuum distillation).
- 7. Preparation of 4-methylacetophenone from toluene. (Purification by vacuum distillation).
- 8. Preparation of phenyl acetate from phenol. (Purification by vacuum distillation)
- 9. Preparation of 2-chlorotoluene from o-toluidine. (Purification by steam distillation)
- 10. Preparation of fluorenone from fluorene. (Purification by column chromatography)
- 11. Preparation of dimethylphthalate from phthalic anhydride. (Purification by vacuum distillation)
- 12. Preparation of biginelli pyridiminone using vanallin by green method. (purification by column chromatography)
- 13. Preparation of cinnamic acid from benzaldehyde. (purification by column chromatography)

Note:

- 1. Students are expected to know (i) the planning of synthesis, effect of reaction parameters including stoichiometry, and **safety aspects including MSDS** (ii) the possible mechanism, expected spectral data (IR and NMR) of the starting material and final product.
- 2. Students are expected to purify the product by Steam distillation / Vacuum distillation or Column chromatography, measure its mass or volume, check the purity by TLC, determine physical constant and calculate percentage yield.

References for Practicals:

- 1. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis-V.K. Ahluwalia and Renu Aggarwal, Universities Press India Ltd., 2000
- 2. Advanced Practical Organic Chemistry N. K. Vishnoi, Third Addition, Vikas Publishing House PVT Ltd
- 3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age International Publications
- 4. Systematic Identification of Organic compounds, 6th edition, R. L. Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York.
- 5. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS
- 6. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall
- 7. Macro-scale and Micro-scale Organic Experiments, K. L. Williamson, D. C. Heath.
- 8. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 9. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clark, Adward Arnold.
- 10. Vogel's Textbook of Practical Organic Chemistry, Fifth edition, 2008, B.S.Furniss, A. J.Hannaford, P. W. G. Smith, A. R. Tatchell, Pearson Education.
- 11. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.
- 12. Organic structures from spectra, L. D. Field, S. Sternhell, John R. Kalman, Wiley, 4th ed., 2011.

Important Note:

- 1. The candidate is expected to submit a journal and project certified by the Head of the Department /institution at the time of the practical examination.
- 2. A candidate will not be allowed to appear for the practical examination unless he/she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.
- 3. Use of non-programmable calculator is allowed both at the theory and the practical examination.

Semester IV

Course Code - PSC4TOC Paper I- Theoretical Organic Chemistry-II

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Explain the principles of molecular association and organization, host- guest interaction, structure and properties of crown ether, cryptands, cyclophanes, rotaxanes, cyclodextrines, molecular self-assembly and Supramolecular polymers	Understand
CO2	Explain principles, methods of asymmetric synthesis and use of chiralauxiliaries in asymmetric synthesis	Understand
CO3	Apply the linear free energy relationship for determination of organicreaction mechanism using Hammett equation and Taft equation.	Apply
CO4	Determine the enantiomer and diastereomer composition by different methods, asymmetric transformation, molecular dissymmetry and chiroptical properties and explain the ORD and CD curves, Cotton effects, octane rule and its applications.	Evaluate

Unit	Course Description	Hrs
1	Physical organic chemistry	
	Structural effects and reactivity: Linear free energy relationship (LFER) in	15
	determination of organic reaction mechanism: The Hammett equation,	
	Substituent constant (σ) and σ values, Reaction constants (ρ), reactions with	
	positive and negative ρ values, Nonlinear Hammett plots (concave upwards	
	and downwards deviations) [9L]	
	Uses of Hammett equation, deviations from Hammett equation. Dual	
	parameter correlations, Inductive substituent constants, Calculation of k	
	values, Taft equation, Solvent effects, Grunwald-	

	Winstein equation, General tools for mechanistically studies of organic	
	reactions, e.g. crossover experiments (intramolecular or intermolecular	
	reaction) and isotope labelling	
	experiments [6L]	
2	Supramolecular chemistry	
	Principles of molecular associations and organizations as exemplified in	15
	biological macromolecules like nucleic acids, proteins and enzymes.	
	[2L]	
	Synthetic molecular receptors: receptors with molecular cleft, molecular,	
	tweezers, receptors with multiple hydrogen sites.	
	[3L]	
	Structures and properties of crown ethers, cryptands, cyclophanes,	
	calixarenes, rotaxanes and cyclodextrins. Synthesis of crown ethers, cryptands	
	and calixarenes, Applications of cyclodextrins in oxidation, reduction,	
	addition etc	
	[6L]	
	Molecular recognition, Molecular interactions and catalysis, molecular self-	
	assembly. Supramolecular Polymers, Gelsand Fibers.	
	[4L]	
3	Stereochemistry- II	
	Racemization and resolution of racemates including conglomerates:	15
	Mechanism of racemization, methods of resolution: mechanical, chemical,	
	kinetic and equilibrium asymmetric transformation and through inclusion	
	compounds with stereospecific reactions.	
	[3L]	
	Determination of enantiomer and diastereomer composition: enzymatic	
	method, chromatographic methods. Methods based on NMR spectroscopy:	
	use of chiral derivatising agents (CDA), chiral solvating agents (CSA) and	
	Lanthanide shift reagents (LSR). [3L]	

	·	
	Structure of amine, isomerism of amines. Nomenclature, special structure	
	of amines determination of configuration of amines. Stereochemistry of	
	schiff's base, hydrazones azobenzenes, amides, conformations of	
	thioamides.	
	[4L]	
	Molecular dissymmetry and chiroptical properties: Linearly and circularly	
	polarized light. Circular birefringence and circular dichroism. ORD and CD	
	curves. Cotton effect and its applications. The octant rule and the axial	
	α-haloketone rule with	
	applications. [5L]	
4	Asymmetric synthesis	
	Principles of asymmetric synthesis: Introduction, the chiral pool in Nature,	15
	methods of asymmetric induction - substrate, reagent and catalyst	
	controlled reactions. [2L]	
	Synthesis of L-DOPA [Knowles's Mosanto process], Synthesis of L-	
	Alanine, Asymmetric reactions with mechanism: Aldol and related	
	reactions, Cram's rule, Felkin-Anh model, Sharpless enantioselective	
	epoxidation, hydroxylation, aminohydroxylation, Diels-Alder reaction,	
	reduction of prochiral carbonyl compounds and olefins, Woodward cis-	
	hydroxylation, Alkylation	
	of chiral enolates. [9L] 4.3 Use of chiral auxiliaries in diastereoselective reductions, asymmetric	
	amplification. Use of chiral BINOLs, BINAPs and chiral	
	oxazolines asymmetric transformations. [4L]	

REFERENCES:

- 1. March's Advanced Organic Chemistry, Jerry March, sixth edition, 2007, John Wiley and sons.
- 2. A guide to mechanism in Organic Chemistry, 6th edition, 2009, Peter Sykes, Pearson education, New Delhi.
- 3. Advanced Organic Chemistry: Reaction Mechanisms, R. Bruckner, Academic Press (2002).
- 4. Mechanism and theory in Organic Chemistry, T. H. Lowry and K. C. Richardson,

- Harper and Row.
- 5. Organic Reaction Mechanism, 4th edition, V. K. Ahluvalia, R. K. Parashar, Narosa Publication.
- 6. Reaction Mechanism in Organic Chemistry, S.M. Mukherji, S.P. Singh, Macmillan Publishers, India.
- 7. Organic Chemistry, Part A and B, Fifth edition, 2007, Francis A. Carey and Richard J. Sundberg, Springer.
- 8. Carbenes, Nitrenes and Arynes. Von T. L. Gilchrist, C. W. Rees. Th. Nelson and Sons Ltd., London 1969.
- 9. Organic reactive intermediates, Samuel P. MacManus, Academic Press.
- 10. Organic Chemistry, J. Clayden, S. Warren, N. Greeves, P. Wothers, 1st Edition, Oxford University Press (2001).
- 11. Organic Chemistry, Seventh Edition, R.T. Morrison, R. N. Boyd & S. K. Bhattacharjee, Pearson. Advanced Organic Chemistry: Reactions & Mechanisms, second edition, B. Miller and R. Prasad, Pearson.
- 12. Organic reactions & their mechanisms, third revised edition, P.S. Kalsi, New Age International Publishers.
- 13. Organic Chemistry: Structure and Function, P. Volhardt and N. Schore, 5th Edition, 2012
- 14. Organic Chemistry, W. G. Solomons, C. B. Fryhle, , 9th Edition, Wiley India Pvt. Ltd., 2009.
- 15. Pericyclic Reactions, S. Sankararaman, Wiley VCH, 2005.
- 16. Advanced organic chemistry, Jagdamba Singh L. D. S. Yadav, Pragati Prakashan, 2011
- 17. Pericyclic reactions, Ian Fleming, Oxford University press, 1999.
- 18. Pericyclic reactions-A mechanistic approach, S. M. Mukherji, Macmillan Co. of India 1979.
- 19. Organic chemistry, 8th edition, John McMurry
- 20. Modern methods of Organic Synthesis, 4th Edition W. Carruthers and Iain Coldham, Cambridge University Press 2004
- 21. Modern physical chemistry, Eric V Anslyn, Dennis A. Dougherty, University science books, 2006
- 22. Physical Organic Chemistry, N. S. Isaacs, ELBS/Longman
- 23. Molecular Orbitals and Organic Chemical Reactions by Ian Fleming (Wiley A john Wiley and Sons, Ltd., Publication)
- 24. Stereochemistry of Carbon Compounds: Principles and Applications, D, Nasipuri, 3rd edition, New Age International Ltd.
- 25. Stereochemistry of Organic Compounds, Ernest L. Eliel and Samuel H. Wilen, Wiley-India edit
- 26. Stereochemistry, P. S. Kalsi, 4th edition, New Age International Ltd
- 27. Organic Stereochemistry, M. J. T. Robinson, Oxford University Press, New Delhi, India edition, 2005
- 28. Bioorganic, Bioinorganic and Supramolecular chemistry, P.S. Kalsi and J.P. Kalsi. New Age International Publishers

- 29. Supramolecular Chemistry; Concepts and Perspectives, J. M. Lehn, VCH.
- 30Crown ethers and analogous compounds, M. Hiraoka, Elsevier, 1992.
- 31Large ring compounds, J.A. Semlyen, Wiley-VCH, 1997.
- 32. Fundamentals of Photochemistry, K. K. Rohtagi-Mukherji, Wiley-Eastern
- 33.Essentials of Molecular Photochemistry, A. Gilbert and J. Baggott, Blackwell Scientific Publication.
- 34. Molecular Photochemistry, N. J. Turro, W. A. Benjamin.
- 35.Introductory Photochemistry, A. Cox and T. Camp, McGraw-Hill
- 36.Photochemistry, R. P. Kundall and A. Gilbert, Thomson Nelson.
- 37. Organic Photochemistry, J. Coxon and B. Halton, Cambridge University Press.

Course Code- PSC4SOC Paper II- Synthetic Organic Chemistry-II

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Explain the concepts of retrosynthesis, protecting groups, syntheticplanning and selective transformations in organic synthesis.	Understand
CO2	Apply disconnection approach, FGI, FGA, FGR and recognize startingcompounds in designing organic synthesis of target molecules.	Apply
CO3	Summarize electro-organic chemistry and use of organocatalyst, Lewis acid, crown ethers, cryptands, micelles etc. in selected methods of organic synthesis.	Understand
CO4	Predict the products of organic synthesis in which transition and rare earthmetals are used.	Create

Unit	Course Description	Hrs
1	Designing Organic Synthesis-I	
	1.1 Protecting groups in Organic Synthesis:	15
	Protection and deprotection of the hydroxyl,	
	carbonyl, amino and carboxyl functional groups	
	and its applications.	
	[3L]	
	1.2 Concept of umpolung (Reversal of polarity):	
	Generation of acyl anion	
	equivalent using 1,3-dithianes, methyl thiomethyl	

	sulfoxides, cyanide ions,
	cyanohydrin ethers, nitro compounds and
	vinylated ethers.
	[3L]
	1.3 Introduction to Retrosynthetic analysis and
	synthetic planning: Linear
	and convergent synthesis; Disconnection
	approach: An introduction to synthesis, synthetic
	equivalents, disconnection approach, functional
	group interconversions (FGI), functional group
	addition (FGA), functional group removal (FGR)
	importance of order of events in organic synthesis,
	one and two group C-X disconnections (1,1; 1,2;
	1,3 difunctionalized compounds),
	[7L]
	1.4 General strategy: choosing a disconnection-
	simplification, symmetry, high
	yielding steps, and recognisable starting material.
	[2L]
2	Designing Organic Synthesis-II 2.2 One group C-C Disconnections: Alcohols (including
	stereoslectivity),
	carbonyls (including regioselectivity), Alkene synthesis, use of acetylenes
	and aliphatic nitro compounds in organic synthesis.
	[7L]
	2.3 Two group C-C Disconnections: 1,2-1,3-1,4-1,5- and 1,6-
	difunctionalized compounds, Diels-
	Alder reactions, α , β -unsaturated compounds. [3L]
	2.4 Application of the above in the synthesis of some complex:
	Camphore, Longifolene,
2	Cortisone, Vitamin D, Aphidicolin. (5L)
3	Electro-organic chemistry and Selected
	methods of Organic synthesis

	3.1 Electro-organic chemistry:	15
	3.1.1 Introduction: Electrode potential, cell parameters, electrolyte,	
	working	
	electrode, choice of solvents, supporting electrolytes.	
	3.1.2 Cathodic reduction: Reduction of alkyl halides, aldehydes, ketones,	
	nitro	
	compounds, olefins, arenes, electro-dimerization.	
	3.1.3 Anodic oxidation: Oxidation of alkylbezene, Kolbe reaction, Non-	
	Kolbe oxidation, Shono Oxidation. [7L]	
	3.2 Selected Methods of Organic synthesis	
	Applications of the following in organic synthesis:	
	3.2.1 Crown ethers, cryptands, micelles, cyclodextrins, catenanes.	
	3.2.2 Pd catalysed cycloaddition reactions: Stille	
	reaction, Saeguse-Ito oxidation	
	to enones, Negishi coupling. [4L]	
	3.3 Epoxidation: mCPBA, BuOOH, H ₂ O ₂ , Dimethyldioxirane, Potassium	
	peroxomonosulphate and aziridination. (4L)	
4	Transition and rare earth metals in organic Synthesis 4.1 Introduction to basic concepts: 18 electron rule, oxidative addition, reductive elimination, migratory insertion. Kumada reaction, Hiyama reaction, Buchwald Hartwig reaction., Carbonylation reaction. [3L]	15
	4.2 Palladium in organic synthesis: π -bonding of Pd with olefins,	
	applications in C-C bond formation, carbonylation, alkene isomerisation,	
	cross- coupling of organometallics and halides. Representative examples:	
	Heck reaction, Suzuki- Miayura coupling, Sonogashira reaction and Wacker	
	oxidation. Heteroatom coupling for bond formation between aryl/vinyl	
	groups and N, S, or P atoms. [5L]	
	4.3 Olefin metathesis using Grubb's catalyst. [1L	
	4.4 Application of Ni, Co, Fe, Rh, and Cr carbonyls in organic synthesis.	
	[4L]	
	4.5 Application of samarium iodide including reduction of organic halides,	
	aldehydes and ketones, α -functionalised carbonyl and nitro	
	compounds. [2L]	

REFERENCES:

- Advanced Organic Chemistry, Part A and Part B: Reaction and Synthesis, Francis A. Carey, Richard J. Sundberg, 5th Edition, Springer Verlag
- 2. Modern Methods of Organic Synthesis, 4th Edition, W. Carruthers and Iain Coldham, Cambridge University Press, 2004.
- 3. Chem. Rev. 2002, 102, 2227-2302, Rare Earth Metal Triflates in Organic Synthesis, S. Kobayashi, M. Sugiura, H. Kitagawa, and W.W.L. Lam.
- 4. Organic Chemistry, Clayden Greeves Warren and Wothers, Oxford Press (2001).
- 5. Modern Organic Synthesis: An Introduction, G.S. Zweifel and M.H. Nantz, W.H. Freeman and Company, (2007).
- 6. Advanced Organic Chemistry: Reaction Mechanism, R. Bruckner, Academic Press (2002).
- 7. Principles of Organic Synthesis, R.O.C. Norman & J. M. Coxon, 3rd Edn., Nelson Thornes
- 8. Organic Chemistry, 7th Edn, R. T. Morrison, R. N. Boyd, & S. K. Bhattacharjee, Pearson
- 9. Strategic Applications of Name Reactions in Organic Synthesis, L. Kurti & B. Czako (2005), Elsevier Academic Press
- 10. Advanced Organic Chemistry: Reactions & Mechanisms, 2nd Edn., B. Miller & R. Prasad, Pearson
- 11. Organic reactions and their mechanisms, 3rd revised edition, P.S. Kalsi, New Age International Publishers
- 12. Organic Synthesis: The Disconnection Approach, Stuart Warren, John Wiley & Sons, 2004
- 13. Name Reactions and Reagents in Organic Synthesis, 2nd Edn., Bradford P. Mundy, Michael G. Ellard, and Frank Favoloro, Jr., Wiley-Interscience
- 14. Name Reactions, Jie Jack Lie, 3rd Edn., Springer
- 15. Organic Electrochemistry, H. Lund, and M. Baizer, 3rd Edn., Marcel Dekker.

Course Code- PSC4NPHS Paper III- Natural products Heterocyclic chemistry and Spectroscopy

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Explain occurrence, classification, structural and stereochemical featuresof steroids, insect pheromones, insecticides, vitamins and their biological role in life related processes.	Understand
CO2	Plan the synthesis of biologically important steroids, vitamins, antibiotics, insecticides.	Apply
CO3	Apply fundamentals of heterocyclic reactivity and synthesis skills required for heterocyclic compounds in research and industry and explain the names of	Apply
	heterocycliccompounds by IUPAC nomenclature and replacement nomenclature.	
CO4	Interpret the data for the structure elucidation of organic compounds based on UV, IR, ¹ H-NMR, ¹³ C-NMR two dimensional spectroscopic techniques, COSY and HETCOR spectra, NOE and NOESY, INEPT, APT and INADEQUATE techniques.	Evaluate

Unit	Course Description	Hrs
1	Natural Product-III 1.1: Steroids: General structure, classification. Occurrence, biological role,	15
	important structural and stereochemical features of the following:	
	corticosteroids, steroidal hormones, steroidal alkaloids, sterols and bile acids.	
	(5L)	
	1.2: Synthesis of 16-DPA from cholesterol and plant sapogenin. (2L)	
	1.3: Synthesis of the following from 16-DPA: androsterone, testosterone,	
	oestrone, and progesterone. (3L)	
	1.4: Insect pheromones : General structural features and importance. Types	
	of pheromones (aggregation, alarm, releaser, primer, territorial, trail, sex	
	pheromones etc.), advantage of pheromones over conventional pesticides.	
	Synthesis of bombykol from acetylene, disparlure from 6-methylhept-1-ene,	

grandisol from 2- methyl-1, 3-butadiene. Pheromones-production, and their use in pest surveillance and management of pests. Merits and demerits in using pheromones for pest management. Pheromones in yeast, bacteria and protozoa. Primer and releaser pheromones effects in gold fish. Pheromones in masking the poison based shyness in rodents. (5L)

2 Natural Product-IV

2.1: Vitamins: Classification, sources and biological importance of vitamin B1,

B2, B6, folic acid, B12, C, D1, E (α - tocopherol), K1, K2, H (β -biotin).

Synthesis of the following:

Vitamin A from β -ionone and bromoester moiety.

Vitamin B1 including synthesis of pyrimidine and thiazole moietiesVitamin B2 from 3, 4-dimethylaniline and D(-) ribose

Vitamin B6 from: 1) ethoxyacetylacetone and cyanoacetamide, 2) ethyl esterof N-formyl-DL- alanine (Harris synthesis)

Vitamin E (α -tocopherol) from trimethylquinol and phytyl bromideVitamin K1 from 2-methyl-1, 4-naphthaquinone and phytol Synthesis of Vitamin H (8L)

2.2: Antibiotics: Antibiotics: Structure elucidation,

spectral data of penicillin-G and chloramphenicol. Synthesis of chloramphenicol (from benzaldehyde and β-nitroethanol) penicillin-G and phenoxymethylpenicillin from D- penicillamine and t-butyl phthalimide malonaldehyde (synthesis of D- penicillamine and t-butyl phthalimide malonaldehyde expected). (5L)

2.3: Naturally occurring insecticides: Sources, structure and biological properties of pyrethrums (pyrethrin I), rotenoids (rotenone). Synthesis of pyrethrin I. (2L)

3	Heterocyclic Chemistry-II	15
	4.1 : Nomenclature of heterocyclic compounds of bicyclic/tricyclic (5-6 Membered) fused heterocycles (up to three hetero atoms). (Common, systematic (Hantzsch-Widman) and replacement nomenclature). (3L) 4.2 : Structure, reactivity, synthesis and reactions of quinoline, indole, coumarines, benzimidazoles, benzthiazoles, quinoxaline, benzofuran, benzothiophene. (10L) Structure elucidation of quinoline and isoquinoline.(2L)	
4	Advanced Spectroscopic Techniques-II 3.1 : Advanced NMR techniques: DEPT experiment, determining number of Attached hydrogens (methyl/methylene/methine and quaternary carbons), two dimensional spectroscopic techniques, COSY and HETCOR spectra, NOE and NOESY, INEPT, APT and INADEQUATE techniques (10L) 3.2 : Spectral problems based on UV, IR, 1HNMR, 13CNMR (Including 2D technique) and Mass spectroscopy. (5L)	15

REFERENCES:

- 1. Natural product chemistry, A mechanistic, biosynthetic and ecological approach, Kurt B.G. Torssell, Apotekarsocieteten –Swedish Pharmaceutical Press.
- 2. Natural products chemistry and applications, Sujata V. Bhat, B.A. Nagasampagi and S. Meenakshi, Narosa Publishing House, 2011.
- 3. Organic Chemistry Natural Products Volume-II, O. P. Agarwal, Krishna Prakashan, 2011.
- 4. Chemistry of natural products, F. F. Bentley and F. R. Dollish, 1974
- 5. Natural Product Chemistry Vol.1 and 2, K. Nakanishi J. Goto. S. Ito Majori and S. Nozoo, Academic Press, 1974.
- 6. Chemistry of natural products, V.K. Ahluwalia, Vishal Publishing Co. 2008.
- 7. Heterocyclic chemistry, 3rd edition, Thomas L. Gilchrist, Pearson Education, 2007.
- 8. Heterocyclic Chemistry, Synthesis, Reactions and Mechanisms, R. K. Bansal, Wiley
- 9. Eastern Ltd., 1990.
- 10. Heterocyclic Chemistry, J. A. Joule and G. F. Smith, ELBS, 2nd edition, 1982.
- 11. The Conformational Analysis of Heterocyclic Compounds, F.G. Riddell, Academic Press, 1980.
- 12. Principles of Modern Heterocyclic Chemistry, L.A. Paquette, W.B. Benjamin, Inc., 1978
- 13. An Introduction to the Chemistry of Heterocyclic Compounds, 2nd edition, B.M. Acheson, 1975.
- 14. Natural Products: Chemistry and Biological Significance Interscience, J. Mann, R.S. Davidson, J.B. Hobbs, D.V. Banthrope and J. B. Harborne, Longman, Essex, 1994.
- 15. Organic Chemistry, Vol 2, I.L. Finar, ELBS, 6th edition, Pearson.
- 16. Stereoselective Synthesis: A Practical Approach, M. Nogradi, Wiley-VCH, 1995.
- 17. Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.

- 18. Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the mericas, Ed. Kurt Hostettmann, M.P. Gupta and A. Marston, Harwood Academic Publishers.
- 19. Introduction to Flavonoids, B.A. Bohm, Harwood Academic Publishers, 1998.
- 20. New Trends in Natural Product Chemistry, Atta-ur-Rahman and M.I. Choudhary, Harwood Academic Publishers, 1998.
- 21. Insecticides of Natural Origin, Sukh Dev, Harwood Academic Publishers.
- 22. Comprehensive Organic Chemistry by Barton and Olis, Pergamon Press, Oxford, 1979.
- 23. Medicinal Natural Products, a Biosynthetic Approach, Derick Paul, John Wiley and Sons, 2002.
- 24. Biosynthesis of Natural Products, Mannitto Paolo, Ellis Horwoocl Limited, 1981.
- 25. Selected Organic synthesis, Ian Fleming, John Wiley and Sons, 1973.

Course Code- PSC4IPR Paper IV- Intellectual Property Rights & Cheminformatics

COS.	After successful completion of this course	Bloom
	Students will be able to,	Taxonomy
		Level (BTL)
CO1	Define various terminologies related to IPR	Remember
CO2	Explain the role of law in the violation of IPR	Understand
CO3	Summarise the various models of cheminformatics.	Understand
CO4	Apply the knowledge of cheminformatics to predict the properties of compounds, structures and drug designing.	Apply

Unit	Course Description	Hrs
1	Introduction to Intellectual Property-I	
	1.1 Introduction to Intellectual Property:	15
	Historical Perspective, Different	
	types of IP, Importance of protecting IP. (2L)	
	1.2 Patents: Historical Perspective, Basic and associated right, WIPO,	
	PCT	
	system, Traditional Knowledge, Patents and Health care-balancing	
	promoting innovation with public health, Software patents and their	
	importance for India. (5L)	
	1.3 Industrial Designs: Definition, How to obtain, features, International	
	design registration. (2L)	
	1.4 Copyrights: Introduction, How to obtain, Differences from Patents.	
	(2L)	
	1.5 Trade Marks: Introduction, How to obtain, Different types of marks,	
	Collective marks, certification marks, service marks, trade names etc.(2L)	
	1.6 Geographical Indications: Definition, rules for registration, prevention	
	of illegal exploitation, importance to India. (2L)	
2	Introduction to Intellectual Property-II	
	2.1 Trade Secrets: Introduction and Historical Perspectives, Scope of	15
	Protection, Risks involved and legal aspects of Trade Secret Protection.(2L)	
	2.2 IP Infringement issue and enforcement: Role of Judiciary, Role of law	
	enforcement agencies- Police, Customs etc. (2L)	
	2.3 Economic Value of Intellectual Property: Intangible assets and their valuation, Intellectual Property in the Indian context – Various Laws in India Licensing and Technology transfer. (5L)	
	2.4 Different International agreements:	
	a. World Trade Organization (WTO):	
	1. General Agreement on Tariffs and Trade (GATT), Trade Related	
	Intellectual Property Rights (TRIPS) agreement	

	2. General Agreement on Trade Related Services (GATS) Madrid	
	Protocol.	
	3. Berne Convention	
	4. Budapest Treaty	
	b. Paris Convention	
	WIPO and TRIPS, IPR and Plant Breeders Rights, IPR and Biodiversity.	
	(6L)	
3	Introduction to Cheminformatics	
	3.1 History and evolution of cheminformatics, Use of Cheminformatics,	15
	Prospects of cheminformatics, Molecular modeling and structure	
	elucidation. (5L)	
	3.2 Representation of molecules and chemical reactions: Nomenclature,	
	Different types of notations, SMILES coding, Matrix representations,	
	Structure of Molfiles and Sdfiles, Libraries and toolkits, Different	
	electronic	
	effects, Reaction classification.(5)	
	3.3 Searching Chemical Structures: Full structure search, sub-structure	
	search, basic ideas, similarity search, three dimensional search methods,	
	basics of computation of physical and chemical data and	
	structure descriptors, data visualization.(5L)	
4	Applications of Cheminformatics	
	Prediction of Properties of Compound, Linear Free Energy Relations, Quantitative Structure – Property	15
	Relations, Descriptor Analysis, Model Building, Modeling Toxicity,	
	Structure - Spectra correlations, Prediction NMR, IR and Mass spectra,	
	Computer Assisted Structure elucidations, Computer assisted Synthesis	
	Design, Introduction to drug design, Target Identification and Validation,	
	Lead Finding and Optimization, analysis of HTS data, Virtual Screening,	
	Design of Combinatorial Libraries, Ligand based and Structure based Drug	
	design, Application of Cheminformatics in	
	Drug Design. (15L)	

REFERENCES:

- 1. Andrew R. Leach & Valerie J. Gillet (2007) *An Introduction to Cheminformatics*. Springer: The Netherlands.
- 2. Gasteiger, J. & Engel, T. (2003) Cheminformatics: A textbook. Wiley-VCH
- 3. Gupta, S. P. QSAR and Molecular Modeling. Springer-Anamaya Pub.: New Delhi.

Course Code- PSC4RMT Paper IV- Research Methodology

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Explain the importance of different types of print and digital resources for gap analysis and data collection.	Understand
CO2	Design/propose methodologies preferably with green and safe approach to conduct research	Create
CO3	Anayze scientific data by statistical and graphical methods.	Analyse
CO4	Apply skills of chemical safety & ethical handling of chemicals	Apply

Unit	Course Description	Hrs
1	Research and Literature Survey Scientific Research: (5L)	
	Research: Definition, types, Need of research. Identification of the	
	problem, formulating the objectives, Hypotheses, Research Methods and	
	Methodology	
	Selecting & defining Research problem, Research Process, Research	
	Design: preparing Research design (experimental or otherwise), Actual	
	investigation, Data analysis and interpretation.	
	Literature survey: (5L)	
	Need for Literature Survey, References,	

	predatory, fake journals Introduction to Chemical Abstracts and	15
	Beilstein, Subject Index, Substance Index, Author Index, Formula	
	Index, and other Indices with examples Digital Web sources: [5L]	
	E-journals, Journal access, TOC alerts, Hot articles, Citation Index,	
	Impact factor, H-index, E- consortium, UGC infonet, E-books,	
	Shodhganga, Researchgate, Internet discussion groups and communities,	
	Blogs, preprint servers, Search engines, Scirus, Google Scholar,	
	ChemIndustry, Wiki-databases, ChemSpider, Science Direct,	
2	SciFinder, Scopus. Data Analysis	
<u> </u>	The Investigative Approach: Making and recording Measurements, SI units	15
	and their use, Scientific methods and design of experiments.	13
	Analysis and Presentation of Data: Descriptive statistics, choosing and using statistical tests, Chemometrics, Analysis of	
	Variance (ANOVA), SPSS, Correlation and regression, curve fitting, fitting	
	of linear equations, simple linear cases, weighted linear case, analysis of	
	residuals, general polynomial fitting, linearizing transformations,	
	exponential function fit, r and its abuse, basic aspects of multiple linear	
	regression analysis.	
	(15L)	
3	Methods of Scientific Research and Writing	
	Scientific papers: Reporting practical and project work, Writing literature	15
	surveys and reviews, organizing a poster display, giving an oral presentation.	
	Writing Scientific Papers: Justification for scientific contributions,	
	bibliography, description of methods, conclusions, the need for illustration,	
	style, publications of scientific work, writing	
	ethics, avoiding plagiarism (15L)	
	cines, avoiding plagiarism (13L)	
4	Chemical Safety & Ethical Handling of	
	Chemicals	
	Safe working procedure and protective environment, protective apparel,	
	emergency procedure, first aid, laboratory ventilation, safe storage and use	

of hazardous chemicals, procedure for working with substances that pose	15
hazards, flammable or explosive hazards, procedures for working with gases	
at pressures above or below atmospheric pressure, safe storage and disposal	
of waste chemicals, recovery, recycling and reuse of laboratory chemicals,	
procedure for laboratory disposal of explosives, identification, verification	
and segregation of laboratory waste, disposal of chemicals in the	
sanitary sewer system, incineration and transportation of	
hazardous chemicals. (15L)	

REFERENCES:

- 1. Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J., & Jones, A., (2011), *Practical skills in Chemistry*, 2nd Ed., Prentice Hall, Harlow.
- 2. Hibbert, D. B. & Gooding, J. J. (2006) *Data Analysis for Chemistry* Oxford University Press.
- 3. Topping, J., (1984) *Errors of Observation and their Treatment* 4th Ed., Chapman Hill London.
- 4. Harris, D. C. (2007) Quantative Chemical Analysis 6th Ed., Freeman Chapters 3-5
- 5. Levie, R. De. (2001) *How to use Excel in Analytical Chemistry and in general scientific data analysis* Cambridge University Press.
- 6. Chemical Safety matters IUPAC-IPCS, (1992) Cambridge University Press.
- 7. OSU Safety manual 1.01

Semester IV: Practicals

Course code: PSC4TOP & PSC4SOP

COS.	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Plan the synthesis of organic compounds.	Apply
CO2	Make use of thin layer chromatography and physical constant to know the purity of organic compounds	Apply
CO3	Apply principles of purification techniques such as recrystallization and distillation for purification of organic compounds.	Analyse
CO4	Compare spectral data of reactant and product and explain mechanism of reactions and MSDS of chemicals.	Apply

Two steps preparations (Minimum 8 experiments)

1	Acetophenone → Acetophenone phenyl hydrazine → 2-phenyl indole.
2	2-naphthol → 1-phenyl azo-2-naphthol → 1-amino-2-naphthol.
3	Cyclohexanone → Cyclohexanone oxime → Caprolactum.
4	Hydroquinone \rightarrow hydroquinone diacetate \rightarrow 2,5-dihydroxyacetophenone.
5	4-nitrotoluene → 4-nitrobenzoic acid → 4-aminobenzoic acid.
6	o -nitroaniline $\rightarrow o$ -phenylene diamine \rightarrow Benzimidazole.
7	Benzophenone \rightarrow benzophenone oxime \rightarrow benzanilide.
8	o -chlorobenzoic acid \rightarrow N-phenyl anthranilic acid \rightarrow acridone.
9	Benzoin \rightarrow benzilic acid.
10	Phthalic acid \rightarrow phthalimide \rightarrow anthranilic acid.
11	Resorcinol → 4-methyl-7-hydroxy coumarin → 4-methyl-7-acetoxy Coumarin.
12	Anthracene → anthraquinone → anthrone.
13	Acetophenone-→Oxime-→ Acetanilide.
14	Acetanilide -→ pBromoacetanilide-→ pBromoaniline.
15	Chlorobenzene-→ 2,4-dinitrochlorobenzene-→ 2,4-dinitrophenol.

Note:

- 1. Students are expected to know (i) the planning of synthesis, effect of reaction parameters including stoichiometry, and **safety aspects including MSDS** ii) the possible mechanism, expected spectral data (IR and NMR) of the starting material and final product.
- 2. Students are expected to purify the product by recryllization, measure its mass or volume, check the purity by TLC, determine physical constant and calculate percentage yield.

Session-I:

Course code: PSC4NPP & (PSC4IPP or PSC4RMP)

	After successful completion of this course Students will be able to,	Bloom Taxonomy Level (BTL)
CO1	Interpret spectral data like FT-IR, ¹³ C NMR, ¹ HNMR, UV-Visible spectrum and Mass spectrum for structure elucidation of organic compound	Evaluate

CO2	Analyze the print and digital resources critically to formulate the research problem, argue and justify the statements	Analyse
CO3	Apply the existing methodologies or develop a new methodology to address the research problem	Apply
CO4	Interpret the results and structures it to communicate via dissertation, and oral presentation by following ethical guidelines	Evaluate

Combined spectral identification: Interpretation of spectral data of organic compounds (UV, IR, PMR, CMR and Mass spectra).

A student will be given UV, IR, PMR, CMR, and Mass spectra of a compound from which preliminary information should be reported within first half an hour of the examination without referring to any book/reference material. The complete structure of the compound may then be elucidated by referring to any standard text-book/reference material etc. (Minimum 8 spectral analysis)

Session-II: Project evaluation OR Internship

References for Practicals:

- 1. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis-V. K. Ahluwalia and Renu Aggarwal, Universities Press India Ltd., 2000
- 2. Advanced Practical Organic Chemistry N. K. Vishnoi, Third Addition, Vikas Publishing House PVT Ltd
- 3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age International Publications
- 4. Systematic Identification of Organic compounds, 6th edition, R. L. Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York.
- 5. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS
- 6. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall
- 7. Macro-scale and Micro-scale Organic Experiments, K. L. Williamson, D. C. Heath.
- 8. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 9. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clark, Adward Arnold.
- 10. Vogel's Textbook of Practical Organic Chemistry, Fifth edition, 2008, B.S.Furniss, A. J.Hannaford, P. W. G. Smith, A. R. Tatchell, Pearson Education.
- 11. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.
- 12. Organic structures from spectra, L. D. Field, S. Sternhell, John R. Kalman, Wiley, 4th ed., 2011.

Important Note:

- 1. The candidate is expected to submit a journal and project certified by the Head of the Department /institution at the time of the practical examination.
- 2. A candidate will not be allowed to appear for the practical examination unless he/she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.
- 3. Use of non-programmable calculator is allowed both at the theory and the practical examination.

Janardan Bhagat Shikshan Prasarak Sanstha's

CHANGU KANA THAKUR ARTS, COMMERCE & SCIENCE COLLEGE, NEW PANVEL (AUTONOMOUS)

Re-accredited 'A+' Grade by NAAC
'College with Potential for Excellence' Status Awarded by UGC
'Best College Award' by University of Mumbai

Program: Post-Graduate Diploma in Analytical Instrumentation Total Credits: 20

SYLLABUS

(Approved in the Academic council meeting held on-----)

Post-Graduate Diploma in Analytical Instrumentation

as per Choice Based Credit & Grading System (60:40) w. e. f. Academic Year 2022-23

Preface

Post Graduate Diploma in Advanced Analytical Instrumentation Programme is offered by Changu Kana Thakur Arts, Commerce and Science College, New Panvel is the initiative towards the "Skill India" and "Make in India" campaign by Hon. Prime Minister Narendra Modi. This programme is designed to cater the needs of the qualified trained analytical personnel working in Industries, laboratories, R & D centres and academic institutions. Specifically, it is useful for all the science graduates of our institute and the other institutes aspiring to get employment in industries and pursuing research as well. The chemists working in the industry need to be academically revitalised for total quality management, good laboratory practices and modern analytical instrumentation. The course will bridge the gaps and differences between industry and academic institutions. As the course is based on practical aspects of analysis including handling of highly sophisticated analytical instruments it would be able to accomplish all these targets envisaged.

The participants of this course will have knowledge sample testing, laboratory management, analysis methods, record keeping, technical writing and related activities. They will have job opportunities in Quality control, Quality assurance and R & D, Analytical Development departments / sections in the industries and onsite labs. Those who are already working in these areas will be benefitted by the programme in terms of career enhancement and growth within the organisation or at the time of switching their organisations.

Course Details

↓ Course type : P G Diploma course

Course Title : Post Graduate Diploma in Advanced Analytical Instrumentation

Course Objectives:

- To Provide thorough knowledge and hands- on experience of highly sophisticated analytical instruments and laboratory techniques
- To familiarize the students with Quality control processes, GMP, GLP etc.
- To provide Practice based learning and improvements.
- To train the students with skills, that can meet the requirements of industry.

Course Outcomes

After completing the program, students will be able to

- Prepare solutions of various strength, reagents used for Instrumental analysis.
- Analyze real sample on sophisticated analytical instruments using SOPs.
- Demonstrate handling of troubleshooting abilities on the instruments during actual analysis.
- Interpret chromatographic and spectroscopic analytical data.
- **♣ Eligibility**: B.Sc. in the discipline of Chemistry; Microbiology; Biotechnology, Candidates appearing for the final year of Bachelor's degree or awaiting their results, are also eligible.

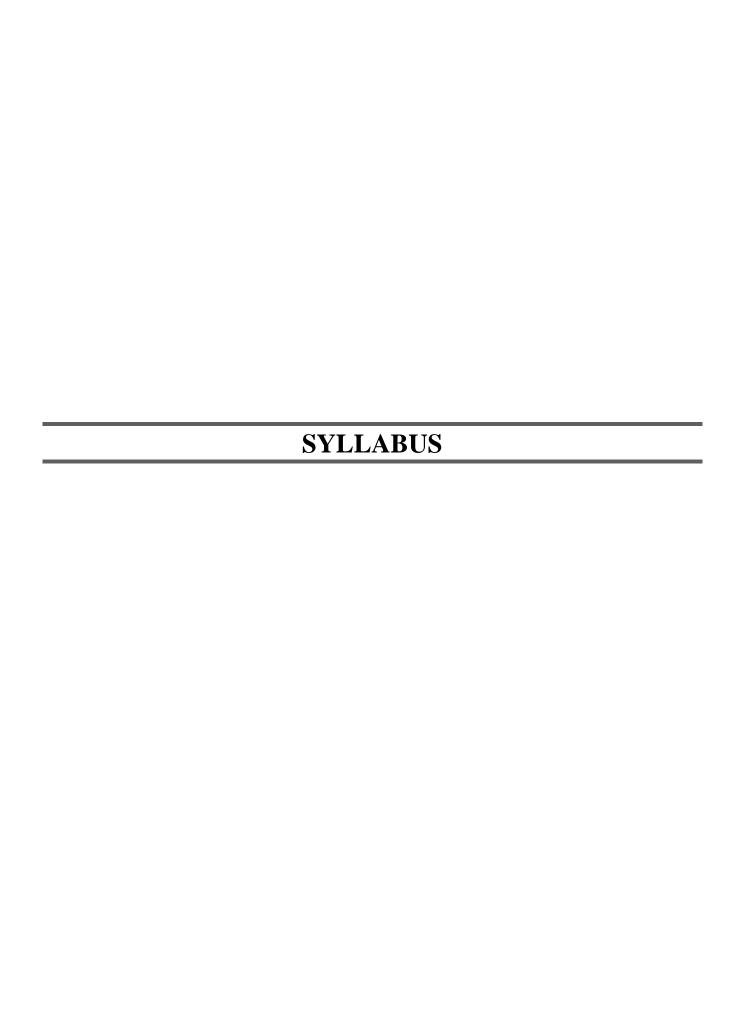
Intake capacity: 20

Duration: 1 Y

Fees: Rs. 20000/-

4 Course coordinator:

Email:


← Career opportunities: Quality control, Quality assurance and R&D/Analytical Devlopement departments/sections of food, pharma API/Formulation Mfg, chemical industries and onsite labs. Those who are already working in these areas will be benefitted by the programme in terms of career enhancement and growth within the organisation or at the time of switching their organisations.

4 COURSE STRUCTURE:

SEMESTER I					
Course	Course Name	Contact hrs.	Marks allotted		Credits allotted
			CIE	final	
Course1	Fundamentals of	30	40	60	02
	Chemical and				
	Pharmaceutical analysis				
Course 2	Advanced Spectroscopic	30	40	60	02
	Techniques				
Laboratory 1	Practical in Spectroscopic	30	50	•	02
•	techniques				
	-				
Laboratory 2	Spectral analysis and	30	50		02
Ž	Interpretation of data				
	1				
Project	Dissertation	30	50		02
3					
	1	Total	350		10

SEMESTER II

Course	Course Name	Contact hrs.	Marks allotted		Credits allocated
			CIA	Final	
Course1	Quality Management system, sample management and safety in industry	30	40	60	02
Course 2	Advanced Chromatographic techniques	30	40	60	02
Laboratory 1	Practical in chromatographic techniques	30	50		02
Laboratory 2	Practical in method development and method validation	30	50		02
Industrial Training (1 to 3 months) (Report)		30	50		02
		Total	350		10

SEMESTER I

Course I: Basic Understanding of Chemical and Pharmaceutical analysis

Course No.	Course name	Course code
I	Basic Understanding of Chemical and Pharmaceutical	PDAI1BCP
	analysis	
Module	Description	Teaching
		hours
• The for	undation module is designed to provide a background in analyt	ical techniques
and intr	roduce new concepts in Quality Control and Statistics.	
A cruci	al component of the foundation module is the introduction of In	ndustrial Ethics
and La	w, which prepares students for dealing with Industrial Regular	tory issues and
complia	ance.	
1.1	Basic Understanding of Chemical and Pharmaceutical analysis	03
1.2	Evaluation of Method of Analysis, Pharmacopoeias	08
	Monographs, Routine Testing, and Verification studies, Method	
	Development and Method Validation.	
	- ICH guidelines for Analytical Method Validation Q2A	
1.3	- Specialized Analytical Techniques: Karl Fischer Titrator,	04
	digital M.P./B.P. meter, Kjeldahl apparatus.	

Course II : Advanced Spectroscopic Techniques

Course No.	Course name	Course code
II	Advanced Spectroscopic techniques	PDAI1AST
Module	description	Teaching
		hours
•		
2.1	Spectroscopic Methods	
	- UV-VIS spectroscopy,	15
	- FTIR spectroscopy,	

- Flame photometry	
- Atomic absorption spectroscopy	
- Mass Spectroscopy	
- Principle behind Spectroscopy.	
- Operation, Cleaning and Calibration of Spectroscopy	
Instruments.	
- Safety Measurements	
- Maintenance of instruments	

Laboratory1

Course No.	Course name	Course code
III	Practical in Spectroscopic techniques	PDAI1PST
Module	description	Teaching
		hours
Practical Training	ng will be provided in Analytical Techniques, Project based Tech	niques,
Utilization of w	ide range of Lab Instrumentation including Spectroscopy and Chi	romatography.
2.1	1. Determination of Paracetamol Tablet by UV-visible	30
	spectrophotometry	
	2. Determination of Metformin hydrochloride tablet by UV-	
	visible Spectrophotometry	
	3. Recording of the UV Scan of the Ibuprofencompound by UV	
	Spectrophotometry	
	4. Determination of P2O5 content in give n sample of	
	phosphatic fertilizers.	
	5. Study of the FT-IR spectrum of Salicylic acid on FT-IR	
	Spectrophotometer.	
	6. Study of the FT-IR spectrum of caffeine by FT-IR	
	spectrophotometer.	
	7. Determination of Copper content in given water sample by	
	AAS	
	8. Determination of Calcium in milk sample	

Laboratory 2

Course No.	Course name	Course code
IV	Practical in Spectral analysis and Interpretation of Data	PDAI1PSI
Module	description	Teaching
		hours
Practical Training will be provided in spectral analysis and interpretation of spectral data.		
2.1	Spectral analysis and Interpretation of Spectral Data	30

SEMESTER II

Course I: Quality Management system, sample management and safety in industry

Course No.	Course name	Course code
I	Quality Management system, sample management and safety in industry	PDAI2QMS
Module	Description	Teaching
		hours
The four	indation module is designed to provide a background in analy	tical
techniq	ues and introduce new concepts in Quality Control and Statis	tics.
• A cruci	al component of the foundation module is the introduction of	Industrial
Ethics a	and Law, which prepares students for dealing with Industrial	Regulatory
issues a	nd compliance.	
1.1	Quality Management System-	
	- Quality Assurance,	
	- Documentation- SOPs, Manuals, Log Books,	
	- Test Reporting	
	- Graphs/ Spectra/ Chromatographs, Raw data interpretation.	
1.1	Sample Management	
	- Guidelines for maintenance for reference standards and	
	working standards	

	- Flow	
	- Storage	
	- Destruction	
1.3	Understanding Basic Safety Rules	
	- Use of Primary Protective Equipment	
	- Environment, Safety & Hazard	
	- Importance of Good Laboratory Practices (GLP) while	
	working in the Laboratory.	

Course II : Advanced Chromatographic techniques

Module	description	Teaching
		hours
Practical Train	ing will be provided in Analytical Techniques, Project based Techniques,	hniques,
Utilization of v	vide range of Lab Instrumentation including Spectroscopy and Ch	romatography.
2.1	Chromatography Methods	
	- Gas chromatography,	15
	- High performance liquid chromatography,	
	- High Performance Thin Layer Chromatography	
	- Principle behind Chromatography.	
	- Operation, Cleaning and Calibration of Chromatographic	
	Instruments.	
	- Safety Measurements	
	- Theoretical knowledge of IQ/OQ/PQ of Instrument	
	- Maintenance of instruments	

Laboratory 1

Course No.	Course name	Course code
III	Practical in chromatographic techniques	PDAI2PST

Module	description	Teaching		
		hours		
Practical Training will be provided in Analytical Techniques, Project based Techniques,				
Utilization of wide range of Lab Instrumentation including Spectroscopy and Chromatography.				
	 Separation of mixture of Benzene & Toluene by GC and study of chromatogram Determination of percentage purity of Methyl Alcohol using GC Assay of methyl paraben using HPLC Determination of alcohol in beer sample by using GC Estimation of nitrogen from given fertilizer by Kjeldahl method Moisture content in pharmaceutical/food sample by Karl Fischer titration method Calibration of Gas chromatography Assay of Vitamin D3 by HPLC 	30		

Practical 2

Course No.	Course name	Course code
IV	Method validation	PDAI2PSI
Module	description	Teaching hours
Practical Training	ng will be provided in spectral analysis and interpretation of spec	tral data.
2.1	 Preparation of Mobile Phase for HPLC.& Preparation of Std Caffeine Sol'n Determination of System Precision Test for Caffeine To determine the linearity of a given solvent or mixture of solvents Study to develop analytical method for determination of assay of pharmaceutical API by UV spectrophotometry Determine the precision of chloroquine phosphate by using UV spectrophotometry 	30

Industrial Visit: One industrial visit is mandatory (Pharma industry(API & Formulations), Speciality Chemicals/Pesticide/Fertillizers effluent treatmentplant, forensic lab.).: 6 Hrs

per visit

Industrial training: Students will send to industry for actual industrial training at least for 1 to 3 months, i.e. total 30 To 90 days.

☐ Students have to prepare a brief report on industrial visit with inputs from industrial personnel. The report will be assessed for internal evaluation

☐ Reference Books

- 1. Inorganic quantitative analysis by Vogel.
- 2. Practical HPLC analysis by Veronica Meyer
- 3. Instrumental methods of Analysis by Skoog, Holler and Nieman.